@inproceedings{an-etal-2018-model,
title = "Model-Free Context-Aware Word Composition",
author = "An, Bo and
Han, Xianpei and
Sun, Le",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1240/",
pages = "2834--2845",
abstract = "Word composition is a promising technique for representation learning of large linguistic units (e.g., phrases, sentences and documents). However, most of the current composition models do not take the ambiguity of words and the context outside of a linguistic unit into consideration for learning representations, and consequently suffer from the inaccurate representation of semantics. To address this issue, we propose a model-free context-aware word composition model, which employs the latent semantic information as global context for learning representations. The proposed model attempts to resolve the word sense disambiguation and word composition in a unified framework. Extensive evaluation shows consistent improvements over various strong word representation/composition models at different granularities (including word, phrase and sentence), demonstrating the effectiveness of our proposed method."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="an-etal-2018-model">
<titleInfo>
<title>Model-Free Context-Aware Word Composition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">An</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Le</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word composition is a promising technique for representation learning of large linguistic units (e.g., phrases, sentences and documents). However, most of the current composition models do not take the ambiguity of words and the context outside of a linguistic unit into consideration for learning representations, and consequently suffer from the inaccurate representation of semantics. To address this issue, we propose a model-free context-aware word composition model, which employs the latent semantic information as global context for learning representations. The proposed model attempts to resolve the word sense disambiguation and word composition in a unified framework. Extensive evaluation shows consistent improvements over various strong word representation/composition models at different granularities (including word, phrase and sentence), demonstrating the effectiveness of our proposed method.</abstract>
<identifier type="citekey">an-etal-2018-model</identifier>
<location>
<url>https://aclanthology.org/C18-1240/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>2834</start>
<end>2845</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Model-Free Context-Aware Word Composition
%A An, Bo
%A Han, Xianpei
%A Sun, Le
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F an-etal-2018-model
%X Word composition is a promising technique for representation learning of large linguistic units (e.g., phrases, sentences and documents). However, most of the current composition models do not take the ambiguity of words and the context outside of a linguistic unit into consideration for learning representations, and consequently suffer from the inaccurate representation of semantics. To address this issue, we propose a model-free context-aware word composition model, which employs the latent semantic information as global context for learning representations. The proposed model attempts to resolve the word sense disambiguation and word composition in a unified framework. Extensive evaluation shows consistent improvements over various strong word representation/composition models at different granularities (including word, phrase and sentence), demonstrating the effectiveness of our proposed method.
%U https://aclanthology.org/C18-1240/
%P 2834-2845
Markdown (Informal)
[Model-Free Context-Aware Word Composition](https://aclanthology.org/C18-1240/) (An et al., COLING 2018)
ACL
- Bo An, Xianpei Han, and Le Sun. 2018. Model-Free Context-Aware Word Composition. In Proceedings of the 27th International Conference on Computational Linguistics, pages 2834–2845, Santa Fe, New Mexico, USA. Association for Computational Linguistics.