@inproceedings{kohn-2018-incremental,
title = "Incremental Natural Language Processing: Challenges, Strategies, and Evaluation",
author = {K{\"o}hn, Arne},
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1253",
pages = "2990--3003",
abstract = "Incrementality is ubiquitous in human-human interaction and beneficial for human-computer interaction. It has been a topic of research in different parts of the NLP community, mostly with focus on the specific topic at hand even though incremental systems have to deal with similar challenges regardless of domain. In this survey, I consolidate and categorize the approaches, identifying similarities and differences in the computation and data, and show trade-offs that have to be considered. A focus lies on evaluating incremental systems because the standard metrics often fail to capture the incremental properties of a system and coming up with a suitable evaluation scheme is non-trivial.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kohn-2018-incremental">
<titleInfo>
<title>Incremental Natural Language Processing: Challenges, Strategies, and Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arne</namePart>
<namePart type="family">Köhn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Incrementality is ubiquitous in human-human interaction and beneficial for human-computer interaction. It has been a topic of research in different parts of the NLP community, mostly with focus on the specific topic at hand even though incremental systems have to deal with similar challenges regardless of domain. In this survey, I consolidate and categorize the approaches, identifying similarities and differences in the computation and data, and show trade-offs that have to be considered. A focus lies on evaluating incremental systems because the standard metrics often fail to capture the incremental properties of a system and coming up with a suitable evaluation scheme is non-trivial.</abstract>
<identifier type="citekey">kohn-2018-incremental</identifier>
<location>
<url>https://aclanthology.org/C18-1253</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>2990</start>
<end>3003</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incremental Natural Language Processing: Challenges, Strategies, and Evaluation
%A Köhn, Arne
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F kohn-2018-incremental
%X Incrementality is ubiquitous in human-human interaction and beneficial for human-computer interaction. It has been a topic of research in different parts of the NLP community, mostly with focus on the specific topic at hand even though incremental systems have to deal with similar challenges regardless of domain. In this survey, I consolidate and categorize the approaches, identifying similarities and differences in the computation and data, and show trade-offs that have to be considered. A focus lies on evaluating incremental systems because the standard metrics often fail to capture the incremental properties of a system and coming up with a suitable evaluation scheme is non-trivial.
%U https://aclanthology.org/C18-1253
%P 2990-3003
Markdown (Informal)
[Incremental Natural Language Processing: Challenges, Strategies, and Evaluation](https://aclanthology.org/C18-1253) (Köhn, COLING 2018)
ACL