@inproceedings{moon-etal-2018-gold,
title = "Gold Standard Annotations for Preposition and Verb Sense with Semantic Role Labels in Adult-Child Interactions",
author = "Moon, Lori and
Christodoulopoulos, Christos and
Fisher, Cynthia and
Franco, Sandra and
Roth, Dan",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1254/",
pages = "3004--3014",
abstract = "This paper describes the augmentation of an existing corpus of child-directed speech. The resulting corpus is a gold-standard labeled corpus for supervised learning of semantic role labels in adult-child dialogues. Semantic role labeling (SRL) models assign semantic roles to sentence constituents, thus indicating who has done what to whom (and in what way). The current corpus is derived from the Adam files in the Brown corpus (Brown 1973) of the CHILDES corpora, and augments the partial annotation described in Connor et al. (2010). It provides labels for both semantic arguments of verbs and semantic arguments of prepositions. The semantic role labels and senses of verbs follow Propbank guidelines Kingsbury and Palmer, 2002; Gildea and Palmer 2002; Palmer et al., 2005) and those for prepositions follow Srikumar and Roth (2011). The corpus was annotated by two annotators. Inter-annotator agreement is given separately for prepositions and verbs, and for adult speech and child speech. Overall, across child and adult samples, including verbs and prepositions, the kappa score for sense is 72.6, for the number of semantic-role-bearing arguments, the kappa score is 77.4, for identical semantic role labels on a given argument, the kappa score is 91.1, for the span of semantic role labels, and the kappa for agreement is 93.9. The sense and number of arguments was often open to multiple interpretations in child speech, due to the rapidly changing discourse and omission of constituents in production. Annotators used a discourse context window of ten sentences before and ten sentences after the target utterance to determine the annotation labels. The derived corpus is available for use in CHAT (MacWhinney, 2000) and XML format."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="moon-etal-2018-gold">
<titleInfo>
<title>Gold Standard Annotations for Preposition and Verb Sense with Semantic Role Labels in Adult-Child Interactions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lori</namePart>
<namePart type="family">Moon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cynthia</namePart>
<namePart type="family">Fisher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandra</namePart>
<namePart type="family">Franco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the augmentation of an existing corpus of child-directed speech. The resulting corpus is a gold-standard labeled corpus for supervised learning of semantic role labels in adult-child dialogues. Semantic role labeling (SRL) models assign semantic roles to sentence constituents, thus indicating who has done what to whom (and in what way). The current corpus is derived from the Adam files in the Brown corpus (Brown 1973) of the CHILDES corpora, and augments the partial annotation described in Connor et al. (2010). It provides labels for both semantic arguments of verbs and semantic arguments of prepositions. The semantic role labels and senses of verbs follow Propbank guidelines Kingsbury and Palmer, 2002; Gildea and Palmer 2002; Palmer et al., 2005) and those for prepositions follow Srikumar and Roth (2011). The corpus was annotated by two annotators. Inter-annotator agreement is given separately for prepositions and verbs, and for adult speech and child speech. Overall, across child and adult samples, including verbs and prepositions, the kappa score for sense is 72.6, for the number of semantic-role-bearing arguments, the kappa score is 77.4, for identical semantic role labels on a given argument, the kappa score is 91.1, for the span of semantic role labels, and the kappa for agreement is 93.9. The sense and number of arguments was often open to multiple interpretations in child speech, due to the rapidly changing discourse and omission of constituents in production. Annotators used a discourse context window of ten sentences before and ten sentences after the target utterance to determine the annotation labels. The derived corpus is available for use in CHAT (MacWhinney, 2000) and XML format.</abstract>
<identifier type="citekey">moon-etal-2018-gold</identifier>
<location>
<url>https://aclanthology.org/C18-1254/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>3004</start>
<end>3014</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Gold Standard Annotations for Preposition and Verb Sense with Semantic Role Labels in Adult-Child Interactions
%A Moon, Lori
%A Christodoulopoulos, Christos
%A Fisher, Cynthia
%A Franco, Sandra
%A Roth, Dan
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F moon-etal-2018-gold
%X This paper describes the augmentation of an existing corpus of child-directed speech. The resulting corpus is a gold-standard labeled corpus for supervised learning of semantic role labels in adult-child dialogues. Semantic role labeling (SRL) models assign semantic roles to sentence constituents, thus indicating who has done what to whom (and in what way). The current corpus is derived from the Adam files in the Brown corpus (Brown 1973) of the CHILDES corpora, and augments the partial annotation described in Connor et al. (2010). It provides labels for both semantic arguments of verbs and semantic arguments of prepositions. The semantic role labels and senses of verbs follow Propbank guidelines Kingsbury and Palmer, 2002; Gildea and Palmer 2002; Palmer et al., 2005) and those for prepositions follow Srikumar and Roth (2011). The corpus was annotated by two annotators. Inter-annotator agreement is given separately for prepositions and verbs, and for adult speech and child speech. Overall, across child and adult samples, including verbs and prepositions, the kappa score for sense is 72.6, for the number of semantic-role-bearing arguments, the kappa score is 77.4, for identical semantic role labels on a given argument, the kappa score is 91.1, for the span of semantic role labels, and the kappa for agreement is 93.9. The sense and number of arguments was often open to multiple interpretations in child speech, due to the rapidly changing discourse and omission of constituents in production. Annotators used a discourse context window of ten sentences before and ten sentences after the target utterance to determine the annotation labels. The derived corpus is available for use in CHAT (MacWhinney, 2000) and XML format.
%U https://aclanthology.org/C18-1254/
%P 3004-3014
Markdown (Informal)
[Gold Standard Annotations for Preposition and Verb Sense with Semantic Role Labels in Adult-Child Interactions](https://aclanthology.org/C18-1254/) (Moon et al., COLING 2018)
ACL