
Proceedings of the 27th International Conference on Computational Linguistics, pages 3049–3063
Santa Fe, New Mexico, USA, August 20-26, 2018.

3049

Generic refinement of expressive grammar formalisms
with an application to discontinuous constituent parsing

Kilian Gebhardt
Department of Computer Science
Technische Universität Dresden

D-01062 Dresden, Germany
kilian.gebhardt@tu-dresden.de

Abstract

We formulate a generalization of Petrov et al. (2006)’s split/merge algorithm for interpreted
regular tree grammars (Koller and Kuhlmann, 2011), which capture a large class of grammar
formalisms. We evaluate its effectiveness empirically on the task of discontinuous constituent
parsing with two mildly context-sensitive grammar formalisms: linear context-free rewriting
systems (Vijay-Shanker et al., 1987) as well as hybrid grammars (Nederhof and Vogler, 2014).

1 Introduction

Probabilistic grammars are a standard model for language processing tasks. Their fundamental principle
is a rewriting process in which nonterminals are repeatedly unfolded in accordance to rewrite rules until a
structure consisting solely of terminals is obtained. Context-free independence assumptions imply that the
applicability as well as the probability of a rewrite step depend only on the nonterminal that is unfolded
but not on the context or history in which the nonterminal occurs.

The independence assumptions allow for tractable algorithms when processing data with these grammars.
Then again, the expressiveness of such a grammar is constrained by the number of its nonterminals. This is
why it was found beneficial to refine naturally emerging sets of nonterminals (such as syntactic categories).
Strategies of refinement of context-free grammars (CFGs) involve for instance Markovization, i.e., the
encoding of limited context into the nonterminals (Collins, 1999; Klein and Manning, 2003), and
automatic state-splitting by means of latent annotations (Matsuzaki et al., 2005; Petrov et al., 2006). An
important observation is that these refinements are latent, i.e., they are not observed in the predictions
that the CFG is supposed to provide. Automatic state-splitting has been successfully applied also to
tree-substitution grammars (Shindo et al., 2012) and tree-adjoining grammars (Ferraro et al., 2012).

Koller and Kuhlmann (2011) proposed interpreted regular tree grammars (IRTGs) as a uniform way to
describe a large class of grammar formalisms that share the context-free rewriting mechanism. IRTGs
decouple the derivational process, in which derivation trees are generated by a (probabilistic) regular tree
grammar (RTG), from the interpretation of derivation trees in one or multiple algebras. IRTGs enable the
development of generic algorithms for binarization (Büchse et al., 2013), parsing and decoding (Groschwitz
et al., 2016; Teichmann et al., 2017), and estimation techniques (Teichmann et al., 2016).

The central hypothesis of this article is that Petrov et al. (2006)’s split/merge algorithm (a) can be
transferred from CFGs to a large class of grammar formalisms and (b) that its application improves the
probabilistic behavior of a given grammar for parsing and decoding tasks.

The first contribution of our paper is a generic version of Petrov et al. (2006)’s split/merge algorithm in
the IRTG framework. We choose IRTGs because the separation of the derivational process in an RTG
from the interpretation in algebras implies that (i) only one algorithm needs to be formulated to capture
a large class of grammar formalisms and that (ii) the nonterminals cannot be observed in the generated
structures. Because of (ii) nonterminals of IRTGs may be viewed as already being latent, i.e., with IRTGs
latent annotations come for free. We also transfer objectives for efficient parsing and decoding as proposed

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

3050

by Matsuzaki et al. (2005) and Petrov and Klein (2007) into the IRTG framework. An implementation of
the generic algorithms is provided.

Then, for a case study of (b) we apply the generalized split/merge algorithm and the different parsing
objectives to both linear context-free rewriting systems (LCFRSs) (Vijay-Shanker et al., 1987; Kallmeyer
and Maier, 2013) and hybrid grammars (Nederhof and Vogler, 2014) on the task of discontinuous
constituent parsing. This choice is relevant because the application of the split/merge algorithm to
either grammar formalism has been supposed by Evang and Kallmeyer (2011) and Gebhardt et al. (2017),
respectively, but to our knowledge not yet been performed. We find that the split/merge algorithm improves
the parsing accuracy of the grammars by up to 14.5 points in labeled F1. However, the grammars do not
reach the accuracy of recent transition-based discriminative parsers.

2 Preliminaries

Let A, B, and C be sets and f : A → B and g : B → C be functions. The powerset of A is denoted
by P(A). We extend f in the natural way to f : P(A) → P(B) and f−1 : P(B) → P(A). We call
f surjective, if for each b ∈ B, there exists a ∈ A with f(a) = b. We let g ◦ f : A → C denote the
composition of f and g. We identify a singleton set {a} with its element a.

2.1 Interpreted regular tree grammars
An interpreted regular tree grammar generates an object a of some domain A in two phases: firstly a
derivation tree ξ is generated and secondly ξ is interpreted in an algebra A to a. Figure 1 shows two
derivation trees ξ1 and ξ2 over operator symbols f0, f1 and f2. Each operator symbol admits a fixed
number of arguments called its rank, e.g., the ranks of f0, f1, and f2 are 0, 1, and 2, respectively. A finite,
non-empty set of operator symbols constitutes a signature Σ. The set of derivation trees over Σ, denoted
by TΣ, is the smallest set U where for any f ∈ Σ of rank k and ξ1, . . . , ξk ∈ U we have f(ξ1, . . . , ξk) ∈ U .
Let ξ = f(ξ1, . . . , ξk) be in TΣ. The set of positions of ξ is pos(ξ) = {ε}∪{iπ | 1 ≤ i ≤ k, π ∈ pos(ξi)}.
The operator symbol at the position π in ξ, denoted by ξ(π), is f if π = ε and ξi(π′) if π = iπ′.

fAs0 ()= b fAt0 ()= B(b)

fAs1 (x1)= x1 fAt1 (x1)= S(x1)

fAs2 (x1, x2)= x1x2 fAt2 (x1, x2)= B(x1, x2)

f1

f2

f2

f0 f0

f0

f1

f2

f0 f2

f0 f0

S

B

B

B

b

B

b

B

b

S

B

B

b

B

B

b

B

b
s : b b b

[[·]]At [[·]]At

[[·]]As [[·]]As

t1: t2:ξ1: ξ2:

Figure 1: Operations of the Σex-algebras As and At,
derivation trees ξ1 and ξ2, and evaluation of ξ1 and ξ2
in As and At.

Next, we describe the interpretation of a
derivation tree from TΣ by a Σ-algebra. A Σ-
algebra A consists of a set A (domain) and,
for each operator symbol f in Σ of rank k,
an operation fA : Ak → A. Each deriva-
tion tree f(ξ1, . . . , ξn) in TΣ can be evalu-
ated in A to an element [[f(ξ1, . . . , ξk)]]A =
fA([[ξ1]]A, . . . , [[ξk]]A) in A. Let Σex =
{f0, f1, f2}. Figure 1 shows the operations
of the Σex-algebras As and At with the set of
strings and parse trees as domains, respectively.
Also, it shows the evaluation of ξ1, ξ2 ∈ TΣex

in As to the string s = bbb and the evaluation
of ξ1 and ξ2 in At to the parse trees t1 and t2,
respectively.

Regular tree grammars are useful to describe formal languages of derivation trees. A regular tree
grammar (RTG) (Brainerd, 1969) over Σ is a tuple G = (NG, SG, RG). The finite set NG is disjoint from
Σ and contains nonterminals. SG in NG is the start nonterminal. The set RG is a finite subset of the set of
prototypical rules R[NG,Σ]. R[NG,Σ] contains each rule of the form B → f(B1, . . . , Bk) where f ∈ Σ
is of rank k and B,B1, . . . , Bk are in NG. Figure 2a shows the rules of Gex = ({S,B}, S,RG) over Σex.

An RTG G generates a derivation tree ξ ∈ TΣ if it has a valid run on it: A run of G on ξ is a mapping
r : pos(ξ)→ NG. The rule at position π of r is ruleπr = r(π)→ ξ(π)(r(π1), . . . , r(πk)) where k is the
rank of ξ(π). We call r valid if r(ε) = SG and r is consistent with RG, i.e., for every π ∈ pos(ξ), we
require that ruleπr ∈ RG. We denote the set of all valid runs of G on ξ by runsvG(ξ). The language of
G is L(G) = {ξ ∈ TΣ | runsvG(ξ) 6= ∅}. Moreover, we let runsvG = {(ξ, r) | ξ ∈ TΣ, r ∈ runsvG(ξ)}.

3051

(a)

(Gex, p) :S → f1(B) #1.0
B → f2(B,B) #0.2
B → f0() #0.8

S
B

B
B B

B

S
B

B B
B B

0.22 · 0.83 0.22 · 0.83

r1: r2:

(b) Gs G(s,t1)G(s,t2)

B0,1→f0() X X X
B1,2→f0() X X X
B2,3→f0() X X X
B0,2→f2(B0,1, B1,2) X X
B0,3→f2(B0,2, B2,3) X X
B1,3→f2(B1,2, B2,3) X X
B0,3→f2(B0,1, B1,3) X X
S0,3→f1(B0,3) X X X

(G′ex, p
′) :S → f1(B1) #1.0
B1 → f2(B1, B2) #0.5

(c) B1 → f2(B2, B1) #0.25

B1 → f0() #0.25
B2 → f0() #1.0

S
B1

B1

B1 B2

B2

S
B1

B1

B2 B1

B2

S
B1

B2 B1

B1 B2

S
B1

B2 B1

B2 B1

0.52 · 0.251 0.51 · 0.252 0.51 · 0.252 0.253

r3: r4: r5: r6:

Figure 2: (a) and (c): Prob. RTGs (Gex, p) and (G′ex, p
′) with runs and probabilities (below). (b): Charts.

Figure 2a shows the only valid runs r1 and r2 of Gex on the derivation trees ξ1 and ξ2, respectively, in
tree-like form.

Interpreted RTGs. An interpreted RTG (IRTG) (Koller and Kuhlmann, 2011) is a tuple G =
(G,A1, . . . ,Al) whereG is an RTG over Σ and eachAj is a Σ-algebra1. Given an object a = (a1, . . . , al)
from the domain A = A1 × . . .× Al, the parsing problem for IRTG is to compute parsesG(a) = {ξ ∈
L(G) | ∀j : [[ξ]]Aj = aj}. This set is equal to the intersection of all sets Daj = {ξ ∈ TΣ | [[ξ]]Aj = aj}
and L(G). If, for each aj ∈ Aj , there is an RTG whose language is Daj , then Aj is called regularly
decomposable. In the following we consider only such algebras. Since the languages of RTGs are closed
under intersection, we can construct RTGs Gaj with L(Gaj) = Daj ∩ L(G) and the RTG Ga with
L(Ga) =

⋂
j L(Gaj) = parsesG(a). We call Gaj and Ga the chart of aj and the chart of a, respectively.

As a running example we extend the RTGGex to an IRTG Gex = (Gex,As,At). Then Gex is equivalent
to a CFG where As specifies the generation of strings and At describes the corresponding parse trees.
Figure 2b depicts the rules of the charts Gs, G(s,t1), and G(s,t2) where the nonterminals were annotated
with spans as usual and the start nonterminal is S0,3.

Grammar morphisms. In order to relate two RTGsG′ andG (e.g.,G′ could be a chartGa), we consider
mappings ϕ : NG′ → NG between the respective sets of nonterminals. We lift ϕ to ϕ : R[NG′ ,Σ] →
R[NG,Σ] by setting ϕ(B′ → f(B′1, . . . B

′
n)) = ϕ(B′)→ f(ϕ(B′1), . . . , ϕ(B′n)). If ϕ−1(SG) = {SG′}

and ϕ(RG′) ⊆ RG, then we call ϕ a grammar morphism from G′ to G. Intuitively, ϕ has to establish a
correspondence between the grammars’ start nonterminals and rules.

For instance, we can choose any set M and any mapping ϕ : NG →M that satisfies ϕ−1(ϕ(SG)) =
{SG} and construct a new RTG ϕ(G) from G: we set ϕ(G) = (ϕ(NG), ϕ(SG), ϕ(RG)). Obviously, ϕ is
a grammar morphism from G to ϕ(G).

For each chart Ga we assume a grammar morphism ϕa from Ga to G that gives rise to a one-to-one
correspondence between the valid runs of Ga and the valid runs of G for derivations trees of a. Formally,
for each ξ ∈ parsesG(a) we require that ϕ̄a : runsvGa(ξ)→ runsvG(ξ) where ϕ̄a(r) = ϕa ◦r is a bijection.
For instance, ϕs, ϕ(s,t1), and ϕ(s,t2) strip the spans from each nonterminal, e.g., ϕs(Bi,j) = B.

2.2 Extending IRTGs with probabilities

RTGs and IRTGs can be equipped with probabilities in the standard way: A weight assignment for an RTG
G is a mapping p : RG → [0, 1]. We define the weight of a run r on a derivation tree ξ as W(G,p)(ξ, r) =∏
π∈pos(ξ) p(ruleπr) and the weight of a derivation tree ξ as W(G,p)(ξ) =

∑
r∈runsvG(ξ)

W(G,p)(ξ, r). We
call p proper if, for everyA ∈ NG, we have 1 =

∑
%=(A→f(B1,...,Bk)) in RG p(%). If 1 =

∑
ξ∈TΣ

W(G,p)(ξ),
then we call p consistent. In this case we may write P (ξ, r | G, p) and P (ξ | G, p) for W(G,p)(ξ, r)
and W(G,p)(ξ), respectively, and call (G, p) probabilistic RTG. Let G′ be an RTG and ϕ be a grammar
morphism from G′ to G. Then p ◦ ϕ : RG′ → [0, 1] is a weight assignment for G′.

Given an IRTG G = (G,A1, . . . ,Al) and a proper and consistent weight assignment p forG, we define
a probability distribution on A by P (a | G, p) =

∑
ξ∈parsesG(a)W(G,p)(ξ). Using the chart Ga the same

quantity can be obtained: P (a | G, p) =
∑

ξ∈L(Ga)W(Ga,p ◦ ϕa)(ξ) (see Appendix A.1).

1 For ease of notation, we omit the homomorphism that is originally associated to each algebra. We note that the methods we
develop in the following are agnostic of the algebras and, thus, applicable to the original definition as well.

3052

Considering Gex and the probability assignment p for G in Figure 2a, we get that P ((s, t1) | Gex, p) =
P ((s, t2) | Gex, p) because r1 and r2 have the same probability. In contrast, G′ex in Figure 2c has two
runs (r3/r4 and r5/r6, respectively) on each of ξ1 and ξ2. Taking the sum of their probabilities yields
P ((s, t1) | G′ex, p′) > P ((s, t2) | G′ex, p′) for the IRTG G′ex = (G′ex,As,At).

Inside and outside weights are a tool for efficient calculation of probabilities during training and
parsing. The inside weight β(B) and the outside weight α(B) of a nonterminal B ∈ NG are defined as

β(B) =
∑

%=B→f(B1,...,Bk)∈RG

p(%) · β(B1) · . . . · β(Bk) and α(B) = δSB +
∑

%=C→f(B1,...,Bk) in RG
1≤i≤k : Bi=B

α(C) · p(%) ·
∏
j 6=i

β(Bj) ,

respectively, where δSB = 1 if B = S and 0 otherwise.
The sum of the probabilities of all runs of an RTG G equals β(SG). Hence, an efficient way to obtain

P (a | G, p) is computing β(SGa). The expected frequency with which a nonterminal B occurs in a
run of G is obtained by α(B) · β(B)/β(SG) (Nederhof and Satta, 2004). For any rule % of the form
B → f(B1, . . . , Bk), we let α(%) = α(B) and β(%) = β(B1) · . . . · β(Bk).

2.3 A parsing or decoding problem
Suppose we want to employ Gex for syntactic parsing (for clarity we write G instead of Gex). This can be
framed as a decoding problem: for a given string s, the chart Gs is computed, from which we obtain the
set T = [[L(Gs)]]At of parse trees of s (i.e., T = {t1, t2} in our example). If the IRTG is equipped with a
probability assignment, then, alternatively, one can ask for the best parse tree t̂, which may be formalized
as

t̂ = arg maxt∈T
∑

ξ∈L(Gs) : [[ξ]]At=t
P (ξ | G, p) . (1)

Computing this expression turns out to be infeasible in general because maximizing the sum over the
potentially infinite set of derivation trees and the sum over the exponential number of runs over each
derivation tree resists dynamic programming. A tractable option is to compute the Viterbi run r̂ of the
grammar (Knuth, 1977; Nederhof, 2003), defined as

(ξ̂, r̂) = arg max(ξ,r)∈runsvGs
P (ξ, r | G, p) (2)

or, with a small overhead, the n-best runs (Huang and Chiang, 2005).
For a given derivation tree ξ ∈ TΣ, we can efficiently compute or approximate P (ξ | G, p) by restricting

G to ξ, which yields an RTG Gξ, and computing β(SGξ). Likewise, for a given parse tree t, we can
compute P (t | s,G, p) = β(G(s,t))/β(Gs).

2.4 Expectation/Maximization training
The expectation/maximization (EM) algorithm (Dempster et al., 1977) in the inside-outside variant (Lari
and Young, 1990) carries over to IRTGs. We recall it for sake of completeness. During the expectation
step, we compute a corpus c : RG → R≥0 over rules given a corpus cA : A→ R≥0 over the domain such
that

c(%) =
∑

a∈A cA(a) ·
∑

%′∈ϕ−1
a (%)

α(%′) · p(%′) · β(%′)

β(SGa)
.

In the maximization step the probability assignment p is updated to match the empirical distribution of
c(%). Both steps are iterated until p changes only slightly or until the likelihood of a validation set drops.

3 Refinement of IRTGs with the split/merge algorithm

Probabilistic context-free grammars with latent annotation (PCFG-LAs) were introduced by Matsuzaki
et al. (2005) as a way to tackle the too strong independence assumptions of probabilistic CFG. Instead
of assigning each CFG rule just a single probability, different probabilities are assigned depending on
the substate which is annotated to each nonterminal. These substates are latent, i.e., when calculating

3053

the probability of a parse tree, any assignment of substates to nonterminals is considered. The work of
Petrov et al. (2006) extends the PCFG-LA approach by a procedure that adaptively refines the latent
state set. Petrov et al. (2006) start from a binarized PCFG-LA where each nonterminal has just one
substate. In multiple cycles each such substate is split in two and the resulting grammar is trained with the
EM algorithm. Then 50% of the splits are undone depending on how much likelihood gets lost and the
grammar is trained with EM again. Finally, the rule weights are smoothed and trained once more.

The idea of latent annotated grammar states can be easily formalized in the IRTG framework: The
probabilistic behavior of the IRTG depends only on the nonterminals and the applied rules of its RTG G.
However, in the derivation trees in L(G) and their interpretations, the nonterminals of G are no longer
visible. To calculate the probability of a derivation tree ξ, we have to consider any valid run r on ξ and its
weight. Thus, the latent states of a PCFG-LA naturally correspond to the nonterminals of the RTG G.

We reformulate the split/merge algorithm by Petrov et al. (2006) for an arbitrary IRTG G =
(G,Σ,A1, . . . ,Al). In the process a (fine) probabilistic RTG (G′, p′) is constructed from the (coarse)
probabilistic RTG (G, p), while Σ and the algebras are not changed. The refinement from NG to NG′

allows defining a more subtle probabilistic behavior in (G′, p′). Thus, L(G) = L(G′), however W(G,p)

andW(G′,p′) may differ. In analogy to the original algorithm, each nonterminal is split in two by an inverse
grammar morphism µ−1sp yielding an intermediate grammar Gf . The probabilities of the rules of Gf are
tuned by EM training. Afterwards, splits that turn out less useful are reversed by a grammar morphism µ∆

yielding the grammar G′. The probabilities of this grammar are trained again and smoothed.
The grammar morphisms between the grammars G, Gf , and G′, also imply the existence of grammar

morphisms between the charts of these grammars. Consequently, charts can be easily transformed (sparing
recomputation from scratch) which increases the efficiency of EM training and parsing (cf. Section 3.4).

3.1 Splitting and merging

We define the splitting and merging of nonterminals in a generic way by (inverse) grammar morphisms.
Let (G, p) be a probabilistic RTG. For splitting the nonterminals of (G, p) we consider a surjective
mapping µ : N ′ → NG where N ′ is a finite set (fine nonterminals) and µ−1(SG) is a singleton set.
Splitting corresponds to applying the inverse of µ to G, i.e., µ−1(G) = (N ′, µ−1(SG), R′) where
R′ = µ−1(R) = {%′ ∈ R[N ′,Σ] | µ(%) ∈ R}. The corresponding weight assignment for µ−1(G) is
p ◦ µ, which may be normalized to obtain a genuine probability assignment.

For merging the nonterminals of (G, p) we consider a surjective mapping µ : NG →M where M is a
finite set (merged nonterminals) and µ−1(µ(SG)) = {SG}. Merging is as simple as applying µ to G, i.e.,
computing µ(G) = (M,µ(SG), µ(R)). In order to construct a probability assignment µ(p) for µ(G), we
let for every %̂ ∈ µ(R):

(µ(p))(%̂) =
∑

%∈µ−1(%̂) p(%) · α(%) · β(%)∑
%′∈µ−1(%̂) α(%′) · β(%′)

,

where α and β are computed with respect to (G, p).

Two instances. We give two instances for grammar morphisms in reminiscence of Petrov et al. (2006).
For splitting we consider a grammar morphism µsp that splits every nonterminal B of G but the start
nonterminal into B1 and B2. Formally, µsp : N ′ → NG where N ′ = {Bq | B ∈ NG, B 6= S, q ∈
{1, 2}} ∪ {S} and

µsp(B′) =

{
B if B′ = B1 or B′ = B2

B′ if B′ = S

In order to partially reverse the split of µsp, we define the grammar morphism µ∆ that merges each pair
B1 and B2 back to B based on a utility measure ∆(B1, B2). Formally, µ∆ : N ′ →M where

µ∆(B′) =

{
B if B′ = Bq for B ∈ NG, q ∈ {1, 2}, and ∆(B1, B2) > η

B′ otherwise.

3054

We chose M to be the largest subset of NG ∪N ′ such that µ∆ is surjective.
The function ∆ is meant to approximate the quotient of likelihood after and before merging. This

approximation, introduced by Petrov et al. (2006), uses inside and outside weights of charts, which were
precomupted during EM training, to simulate merging of single instances of B1 and B2 in one chart. A
generalization of ∆ can be defined for arbitrary IRTG as long as each nonterminal of some chart occurs at
most once in a run (App. A.2). The parameter η is set dynamically such that 50% of the splits are merged.

3.2 The complete split/merge cycle Algorithm 3.1 Split/merge cycle

Input: IRTG G = (G,A1, . . . ,Al), prob. ass. p
corpus cA : A→ R≥0

Output: IRTG G′, prob. assignment p′

1: (Gf , pf)← (µ−1sp (G), p ◦ µsp)

2: pf ← B R E A K T I E S(pf)
3: pf ← E M - T R A I N I N G(Gf , pf ,A1, . . . ,Al, cA)
4: (G′, p′)← (µ∆(Gf), µ∆(pf))
5: p′ ← E M - T R A I N I N G(G′, p′,A1, . . . ,Al, cA)
6: p′ ← S M O O T H(G′, p′)
7: p′ ← E M - T R A I N I N G(G′, p′,A1, . . . ,Al, cA)
8: output (G′,A1, . . . ,Al), p′

Splitting, merging, the EM training of Sec-
tion 2.4, and a tie-breaking and smoothing step,
yet to be defined, is composed to a complete
split/merge cycle in Algorithm 3.1. Multiple
split/merge cycles are iteratively applied to a
base grammar G0 until the resulting grammar
Gi reaches the desired level of refinement. For
every refined grammarGi, there exists a grammar
morphism µi fromGi toG0. During tie-breaking
each rule’s probability obtains a small random
perturbation. During smoothing the probability
of a rule % is set proportional to γ·p(%)+(1−γ)·u
where u is the sum of probabilities of rules %′ ∈ µ−1i (µi(%)). Intuitively, the probability of different
refinements of the same rule from the base grammar is slightly aligned. Following Petrov et al. (2006), we
set γ to 0.9 for rules without nonterminals on the right-hand side. Otherwise, we set γ to 0.99.

3.3 Efficient refinement of a chart

Gfa Gf

Gca Gc

ϕ′a

µ′

ϕa

µ

Let Gc be a coarse grammar, a ∈ A be in the domain, and the chart Gca be
already computed. We assume that Gc was refined to Gf = µ−1(Gc) and
that we want to compute the chart Gfa . Due to the definition of splitting and
merging, we do not need to compute Gfa from scratch. Instead we construct
(a grammar that is isomorphic to) Gfa via the grammar morphisms ϕ′a and
µ′ such that the diagram on the right commutes. Let N ′ = {(B, q) | B ∈ NGca , q ∈ µ

−1(ϕa(B))}, and
for every (B, q) ∈ N ′, set ϕ′a(B, q) = q and µ′(B, q) = B. We define Gfa = µ′−1(Gca).

3.4 Parsing objectives and weight projections
In order to apply a refined IRTG to parsing, we return to the question on how to substitute Equation 1. We
consider alternative parsing objectives inspired by Matsuzaki et al. (2005). In the following we refer to
the base RTG and the one resulting from several iterations of Algorithm 3.1 by Gc and Gf , respectively.
Also, we consider charts of a string s and assume grammar morphisms ϕs, ϕ′s, µ, and µ′ as in Section 3.3.

The t̂ of Equation 1 is sometimes called most probable parse. A subproblem that is in general still
infeasible is finding the parse tree corresponding to the most probable derivation tree, i.e.,

t̂ = [[arg max
ξ ∈L(Gfs)

P (ξ | Gf , pf)]]At .

For usual PCFG(-LA) this objective coincides with the most probable parse because derivation trees and
parse trees are in a one-to-one correspondence.

The parse corresponding to the viterbi derivation tree is t̂ = [[ξ̂]] where (ξ̂, r̂) is computed according
to Equation 2 for (Gfs , pf ◦ ϕ′s). This objective is tractable but reported to yield suboptimal parses for
PCFG-LA in terms of the usual bracket scoring metric (Matsuzaki et al., 2005; Petrov et al., 2006).

A combination of coarse-to-fine parsing with n-best parsing yields the base-n-rerank objective: n-best
runs of the base grammar are computed and the corresponding derivation trees are reranked according to
the refined grammar. Formally, we compute t̂ = [[ξ̂]]At with

(ξ̂, r̂) = arg max(ξ,r) ∈ n-best-runs(Gcs,pc ◦ ϕs)P (ξ | Gf , pf) .

3055

SQ→ yf1(MD,VP,NP) yfAs1 (x1, (x2, x3), x4) = (x2x1x3x4) yfAt1 (x1, x2, x3) = SQ(x1, x2, x3)

VP→ yf2(WHNP,VB) yfAs2 ((x1), (x2)) = (x1, x2) yfAt2 (x1, x2) = VP(x1, x2)

WHNP→ yf3() yfAs3 () = (What) yfAt3 () = WHNP(What)

MD→ yf4() yfAs4 () = (should) yfAt4 () = MD(should)

NP→ yf5() yfAs5 () = (I) yfAt5 () = NP(I)

VB→ yf6() yfAs6 () = (do) yfAt6 () = VB(do)

yf1

yf4 yf2

yf3 yf6

yf5

SQ

MD
should

VP
WHNP

What

NP
I

VB

do

What should I do

[[·]]As

[[·]]At

Figure 4: Rules of an LCFRS and the evaluation of a derivation tree in As and At.

Parsing by weight projection. Matsuzaki et al. (2005) propose an alternative parsing objective, where
a new weight assignment q for Gcs is computed based on (Gfs , pf ◦ ϕ′s) such that the KL-divergence of
P (ξ | Gcs, q) to P (ξ | s,Gf , pf) is minimized. Precisely, q = µ′(pf ◦ ϕ′s). Subsequently the parse tree t̂
corresponding to the Viterbi derivation tree is computed using q, i.e., t̂ = [[ξ̂]]At with

(ξ̂, r̂) = arg max(ξ,r) ∈runsv
Gcs

P (ξ, r | Gcs, q) .

An empirically superior way to define q called max-rule-product is due to Petrov and Klein (2007).
They intent to optimize for “the tree with greatest chance of having all rules correct, under the (incorrect)
assumption that the rules correctness are independent.” To this end, each rule is assigned the sum of the
expected frequencies of its refinements, i.e., q(%) is set to

∑
%′∈µ′−1(%) α(%′) ·(pf ◦ϕ′s)(%′) ·β(%′)/β(S

Gfs
).

Hence, the value q(%) does not have to be in the interval [0, 1] and max-rule-product (as well as max-
rule-sum – where the weight of a run is the sum of rule weights rather than the product) is in theory a
potentially non-monotonic and, thus, ill-defined objective (cf. Appendix A.3).

4 Grammars for discontinuous parsing

What should I do

SQ

MD

VP

WHNP VBNP

Figure 3: A discontinuous phrase structure.

String-rewriting linear context-free rewriting systems
(LCFRSs) (Vijay-Shanker et al., 1987) generalize
CFGs and can account for discontinuous constituent
trees such as the one in Figure 3. Each nonterminal
B derives instead of a single string an mB-tuple of
strings. The integer mB ≥ 1 is called fanout of B.
Each rule of an LCFRS consists of a left-hand side
nonterminal B, any number of right-hand side nonterminals B1, . . . , Bk, and a yield function yf . The
latter specifies how the components of the string tuples generated by B1, . . . , Bk are concatenated with
new terminal symbols to form the string tuple of B. The rewriting is linear, that is, each input to yf is
used at most once. Parsing of binary LCFRS is in O(n3m) where n is the sentence length and m is the
maximum fanout of nonterminals of the LCFRS (Seki et al., 1991).

We use the following straightforward representation of LCFRSs as IRTGs: Σ is the set of yield function
symbols, As is the set of tuples over strings, and the string algebra As interprets each yield function
symbol by the respective yield function. To obtain the corresponding parse tree, the derivation tree is
interpreted in an algebra At. Figure 4 depicts an LCFRS with start nonterminal SQ and the interpretation
of a derivation tree.

In a LCFRS/sDCP-hybrid grammar (Nederhof and Vogler, 2014; Gebhardt et al., 2017) (short:
hybrid grammar), an LCFRS is coupled with a tree generating device called simple definite clause
program (sDCP) (Deransart and Małuszynski, 1985). An object in the domain of a hybrid grammar is a
hybrid tree, i.e., a string and a tree together with a linking between sentence positions and tree positions.
Hybrid trees (and hybrid grammars) are suitable to model (formal languages of) discontinuous constituent
structures. Figure 5 depicts a hybrid grammar in IRTG notation and the evaluation of the derivation tree
ξ3 in the algebra Ah to the hybrid tree h. The algebra As is a copy of the string component of Ah and
evaluates ξ3 to “What should I do”. We observe that the structure of ξ3 deviates notably from the structure
of the tree component of h. In fact, the hybrid grammar generates a discontinuous tree although its string
component is equivalent to a CFG.

3056

(a)

(b)

(c)

G : S → g1(A,B) gAs1 ((x1), (x2)) = (x1 x2)

A→ g2() gAs2 () = (What should)

B → g3() gAs3 () = (I do)

gAh1

(
(x1, x2)

(y1)
,
(x3, x4)

(y2)

)
=

SQ
x2 VP
x1 x3

x4

(y1 y2)

gAh2 () =

WHNP

What
MD

should

(
,

)
What should()

gAh3 () =

NP
I

VB

do

(
,

)
I do()

SQ

MD
should

VP
WHNP

What

NP
I

VB

do
What should I do

h:

g1

g2 g3

ξ3:

[[·]]Ah

Figure 5: (a,b): An LCFRS/sDCP-hybrid gram-
mar (G,As,Ah) in IRTG notation. (b): Ah in-
terprets each function symbol gi by a function on
synchronized tuples over trees (top) and tuples
over strings (bottom). (c): Interpretation of ξ3 in
Ah to a hybrid tree h.

Nederhof and Vogler (2014) present an algorithm
that induces an LCFRS/sDCP-hybrid grammar G
given a corpus of phrase structure trees. The algo-
rithm is parametrized by an integer k ≥ 1 that limits
the maximum fanout of the LCFRS component of
G to k. A second parameter of the algorithm is one
of two nonterminal labeling schemes called child
labeling and strict labeling of which the former is
coarser. Drewes et al. (2016) present an algorithm
that computes the chartGh in time polynomial in the
size of some hybrid tree h. Computing Gs, given a
string s, inherits the parsing complexity of LCFRSs.

5 Experimental evaluation

We implemented2 the generic split/merge algorithm
and the parsing objectives in C++ with bindings to
python3. We evaluate it with LCFRSs and hybrid
grammars for discontinuous phrase structure parsing.
We use the TiGer corpus (Brants et al., 2004) and
employ the split of the SPMRL shared task (Seddah
et al., 2014) (TiGerSPMRL) and the one of Hall and
Nivre (2008) (TiGerHN08). TiGer contains ca. 50k
annotated sentences of German news text, exhibits discontinuity, and is predominantly used for evaluation
in recent literature on discontinuous parsing. Evaluation with other languages is subject of further research.
Part-of-speech (POS) tags for the TiGerHN08 test set are predicted using the MATE tagger (Björkelund
et al., 2010), which we trained on the training and development section of TigerHN08.

The base LCFRS is induced from the treebank following Maier and Søgaard (2008). For each rule we
remember the grammatical function symbol of the left-hand side nonterminal to its parent in the algebraAt.

nont. rules / lex. cover.

LCFRSho 767 50,153 / 28,080 78.3%
LCFRSr2` 817 49,297 / 28,080 76.5%
hybridchild 288 39,123 / 28,080 82.9%
hybridstrict 32,281 108,957 / 28,080 50.0%

We binarize the LCFRS either right-to-left (LCFRSr2`)
or head-outward (LCFRSho) (cf. Kallmeyer and Maier,
2013) and apply Markovization (v = 1, h = 1). The
base LCFRS/sDCP-hybrid grammar is induced according
to a modified version of the algorithm by Nederhof and
Vogler (2014) where we include only the POS tag in the
sDCP component of a lexical rule but no additional unary
categories. Also, we include syntactic function labels into the rules’ sDCP component. We restrict the
fanout to 2 and use strict and child labeling (abbreviated hybridstrict and hybridchild, respectively). The
numbers of nonterminals and all/lexical rules of either grammar, and the coverage of trees from the
development set are given in the table on the right for TiGerHN08.

The LCFRSs and hybrid grammars are refined by 5 and 4 split/merge cycles, respectively. We stop
EM training if the likelihood of the covered trees in the development set decreases. Then we apply the
grammars in some of the ways outlined in Section 3.4 for parsing unseen sentences. Each sentence is
a tokenized string s over pairs of words and (gold) POS tags. For both LCFRSs and hybrid grammars
we have to carry out an LCFRS parsing step on s, for which we employ the implementation3 of van
Cranenburgh et al. (2016, see Sec. 6.4). Precisely, a pruned version of the chart Gs is computed via a
coarse-to-fine pipeline that utilizes a PCFG approximation of the probabilistic LCFRS. Once a best parse
has been selected, we compare it to the gold tree by computing F1 and exact match (EM) for labeled
brackets, F1 for discontinuous labeled brackets, and F1 including function tags (F1-fun) using disco-dop3.

2The implementation is freely available at https://github.com/kilian-gebhardt/panda-parser.
3disco-dop can be obtained from https://github.com/andreasvc/disco-dop. For evaluation on TiGerHN08

we use the proper.prm parameters. For TiGerSPMRL we also report F1 with spmrl.prm.

https://github.com/kilian-gebhardt/panda-parser
https://github.com/andreasvc/disco-dop
https://raw.githubusercontent.com/andreasvc/disco-dop/master/proper.prm
https://raw.githubusercontent.com/mcoavoux/mtg/master/mind_the_gap_v1.0/data/spmrl.prm

3057

Objective F1 (disc) EM F1-fun F1 (disc) EM F1-fun F1 (disc) EM F1-fun F1 (disc) EM F1-fun

LCFRS head-outward LCFRS right-to-left hybridchild hybridstrict

base-Viterbi 68.29 (22.55) 28.21 41.73 70.36 (23.00) 30.06 43.15 63.19 (15.04) 23.89 39.22 69.86 (29.34) 29.63 43.24
fine-Viterbi 76.59 (29.01) 35.87 63.45 77.32 (30.94) 36.83 65.48 76.56 (29.66) 39.27 65.03 73.34 (34.47) 33.95 61.06
variational 79.09 (33.17) 41.30 67.23 79.04 (34.32) 40.85 68.74 77.48 (30.53) 40.79 66.96 73.94 (33.75) 35.28 62.34
max-rule-prod. 79.44 (33.74) 41.73 67.51 79.21 (34.54) 40.95 68.83 77.69 (30.45) 41.18 67.05 73.99 (34.02) 35.48 62.37
base-500-rerank 74.09 (29.31) 36.77 55.65 74.52 (28.82) 36.49 56.15 69.30 (25.61) 31.82 52.16 72.53 (32.98) 33.68 55.41

Table 1: Results on the TiGerHN08 development set with gold POS tags for sentences up to length 40.

The results on the TiGerHN08 development set are depicted in Table 1. The refined grammars notably
improve over the respective base grammars by up to 14.50 points in F1. If we fix a base grammar but alter
the parsing objectives, then we observe the following variations in F1 and EM: Reranking the 500-best
derivations of the base grammar gives worse results than the Viterbi objective on the refined grammar.
The weight projection approaches again improve over the Viterbi objective by up to 2.85 and 1.13 points
in F1 for LCFRSs and hybrid grammars, respectively, where max-rule-product is consistently superior
to variational. We do not observe an instance where max-rule-product is ill-defined in our experiments.
Figure 6 shows that the F1 decreases for longer sentences by the example of LCFRSho/max-rule-product.
LCFRSr2` is superior to LCFRSho with the Viterbi objective but the opposite holds for the projection-based
objectives. Hybridstrict, which suffers from 165 parse failures, produces worse results than hybridchild (12
parse failures) except for the reranking objective. For the discontinuous F1 and the F1-fun we find that
LCFRSr2` performs better than LCFRSho in all cases but one. Also hybridstrict outperforms hybridchild
with respect to discontinuous F1 but not for F1-fun. Overall, LCFRSs outperform hybrid grammars in
terms of F1. The best F1 of 79.44 and 77.69 are obtained by LCFRSho and hybridchild, respectively, with
max-rule-product.

We parse the test set with LCFRSho and hybridchild using the max-rule-product objective. We present the
results and compare to other discontinuous constituent parsers of the recent literature in Table 2. Most of
these parsers are discriminative. The parsers by Hall and Nivre (2008), Fernández-González and Martins
(2015), and Corro et al. (2017) employ different forms of dependency representation which are converted
into constituent structures (dep2const). In contrast, Maier (2015), Maier and Lichte (2016), Coavoux
and Crabbé (2017), and Stanojević and Garrido Alhama (2017) employ transition systems (SR-swap,
SR-gap, SR-adj-gap) that can produce discontinuous constituent structures directly. Lastly, the chart-based
parser of van Cranenburgh et al. (2016) is a generative model that enhances LCFRSs to discontinuous tree
substitution grammars where tree fragments are learned according to the data-oriented parsing (DOP)
paradigm. The results on the HN08 test set are close to the one on the development set. The F1 on
the SPMRL test set is more than 4 points lower than in the HN08 split. Other parsers exhibit the same
phenomenon that is probably caused by a shift in the distribution to longer sentences. Using predicted
POS tags decreases the F1 by 2.38 and 2.00 points for the LCFRS and the hybrid grammar, respectively.

Discussion. The results indicate a strong influence of the granularity of the base grammar’s nonterminals.
A low granularity results in a higher coverage but also decreases the performance of the base grammar.
For instance, for hybrid grammars we see that, despite many parse failures, strict labeling outperforms
child labeling with the reranking objective. The drastically lower scores of the reranking objective for
LCFRSr2`, LCFRSho and hybridchild in light of the small difference with hybridstrict are likely caused
by the base grammars being too coarse and, thus, assigning higher probabilities to bad candidates.
Moreover, we suppose that including some context in the base grammars’ nonterminals helps to guide
the split/merge algorithm and avoids overfitting: For hybridchild the accuracy drops if we run more than 4
split/merge cycles. Also, in early experiments we observed worse performance if the conditioning context
of Markovization for LCFRSs is further restricted. It will be interesting to study hybrid grammars whose
base grammars have slightly finer nonterminals than with child labeling.

The EM algorithm is prone to overfitting to the training corpus. In fact, in our experiments we
observed that the validation likelihood decreased after some epochs of training whereas the smoothing
step counteracted this trend. To improve robustness, we plan to investigate changes in the training regime,

3058

0 20 40 80
0

100

200

freq.

70
80

50

90
F1(= `)
F1(≤ `)
freq(`)

length

F1

Figure 6: Frequency of sen-
tence length `, F1 for sen-
tences of length `, and F1
of sentences of length ≤ `
on TiGerHN08 dev. set with
LCFRSho/max-rule-product.

Method TiGerSPMRL TiGerHN08 ` ≤ 40
F1 spmrl/proper F1 EM F1-fun

Hall and Nivre (2008) dep2const - / - 79.93 - -
Fernández-González and Martins (2015) dep2const 80.62 / - 85.53 - -
Corro et al. (2017) dep2const - / 81.63 - - -
Maier (2015) SR-swap - / - 79.52 44.32 -
Maier and Lichte (2016) SR-swap - / 76.46 80.02 45.11 -
Coavoux and Crabbé (2017) SR-gap 81.50 / 81.60 85.11 - -
Stanojević and Garrido Alhama (2017) SR-adj-swap - / 81.64 84.06 - -
here LCFRS: head-outward/max-rule-product 75.00 / 75.08 79.29 42.55 67.25
here hybrid grammar: child/max-rule-product 72.91 / 72.98 77.68 41.28 66.72

† van Cranenburgh et al. (2016) DOP - / - 78.2 40.0 68.1
† here LCFRS: head-outward/max-rule-product - / - 76.91 39.22 64.91
† here hybrid grammar: child/max-rule-product - / - 75.66 38.40 64.66

Table 2: Evaluation on the test sets. Rows with † use predicted POS tags.

e.g., adding a prior on probability assignments or merging a higher percentage of nonterminal splits.
It is not surprising that the best results are obtained with the projection-based parsing objectives: the

loss function of EM training does not guarantee that the probability mass of one derivation is concentrated
in a single run. That max-rule-product outperforms the variational approach in terms of F1 and EM is in
accordance with the findings and interpretations of Petrov and Klein (2007). For hybrid grammars the
improvements of the projection-based methods are smaller than for LCFRSs which may be explained by
the additional layer of spurious ambiguity (i.e., multiple derivation trees for one hybrid tree) they exhibit.

The F1 on discontinuous brackets is much lower than the overall F1 where the discontinuous recall
is particularly low. Each grammar predicts only between 631 and 989 discontinuous brackets where
there are 1837 in the gold standard. This could be affected by the way we approximate the PCFG in the
coarse-to-fine pipeline which penalizes discontinuous rules. Most discontinuous brackets are predicted
with the reranking objective but, as the lower discontinuous F1 indicates, these brackets are often incorrect.

Table 2 shows that the systems proposed in the literature exhibit a higher F1 than our grammars. This
holds in particular for the systems that employ discriminative (and sometimes global) features, which are
not available in our system. On the other hand, also van Cranenburgh et al. (2016)’s DOP-based parser is
superior to our system in the predicted POS tag scenario. One reason might be error propagation due to
wrong POS tags predicted by the external tagger that we use. In contrast, in van Cranenburgh et al. (2016)
POS tags are predicted during parsing. Also, the probability assignment that we obtained by EM training
may be less robust than the rule probabilities obtained according to the DOP paradigm.

Conclusion. The state refinement method considerably improves over the baseline grammars, which
confirms our hypothesis that the usefulness of the split/merge algorithm goes beyond parsing with CFGs.
However, at least with the used version of EM training, the initial granularity of the nonterminal set
has a decisive impact on the quality of the resulting grammar and should be chosen carefully. When
considering the task of discontinuous parsing, the results fall behind recent advances in the literature. This
holds in particular for the discriminative deterministic transition-based systems where the representable
discontinuity is not restricted by grammar constants, non-local features may be considered, and the parsing
is much faster. One remedy to the lower accuracy and speed could be the enhancement of our chart-based
method with a discriminative classifier to guide the pruning of the chart (Vieira and Eisner, 2017). In the
future one may advance the understanding of the split/merge algorithm by applying it to other IRTGs
such as synchronous hyperedge replacement grammars for graph parsing (Peng et al., 2015) or in a task
different from parsing like syntax-based machine translation with synchronous grammars (Chiang, 2007).

Acknowledgements

The author thanks the anonymous reviewers for many helpful comments, Markus Teichmann for contribut-
ing to the implementation, Heiko Vogler and Tobias Denkinger for feedback on a draft of this paper, and
Andreas van Cranenburgh and Toni Dietze for helpful discussions. The implementation utilizes disco-dop
by Andreas van Cranenburgh, treetools by Wolfgang Maier, and the Eigen template library.

https://github.com/andreasvc/disco-dop
https://github.com/wmaier/treetools
http://eigen.tuxfamily.org

3059

References

Anders Björkelund, Bernd Bohnet, Love Hafdell, and Pierre Nugues. 2010. A high-performance syntactic
and semantic dependency parser. In Coling 2010: Demonstrations. Beijing, China, pages 33–36.
https://www.aclweb.org/anthology/C10-3009.

Walter S. Brainerd. 1969. Tree generating regular systems. Information and Control 14(2):217 – 231.
https://doi.org/10.1016/S0019-9958(69)90065-5.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Silvia Hansen-Schirra, Esther König, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszkoreit. 2004. TIGER: Linguistic interpretation of a Ger-
man corpus. Research on Language and Computation 2(4):597–620. https://doi.org/10.1007/s11168-
004-7431-3.

Matthias Büchse, Alexander Koller, and Heiko Vogler. 2013. General binarization for parsing and
translation. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Sofia, Bulgaria, pages 145–154. https://www.aclweb.org/anthology/P13-
1015.

David Chiang. 2007. Hierarchical phrase-based translation. Computational Linguistics 33(2):201–228.
https://doi.org/10.1162/coli.2007.33.2.201.

Maximin Coavoux and Benoit Crabbé. 2017. Incremental discontinuous phrase structure parsing
with the gap transition. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1, Long Papers. Valencia, Spain, pages 1259–1270.
https://www.aclweb.org/anthology/E17-1118.

Michael John Collins. 1999. Head-driven Statistical Models for Natural Lan-
guage Parsing. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA, USA.
http://www.cs.columbia.edu/∼mcollins/papers/thesis.ps.

Caio Corro, Joseph Le Roux, and Mathieu Lacroix. 2017. Efficient discontinuous phrase-structure
parsing via the generalized maximum spanning arborescence. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing. Copenhagen, Denmark, pages 1644–1654.
https://www.aclweb.org/anthology/D17-1172.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. 1977. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological)
39(1):1–38. https://www.jstor.org/stable/2984875.

Pierre Deransart and Jan Małuszynski. 1985. Relating logic programs and attribute grammars. Journal of
Logic Programming 2(2):119–155. https://doi.org/10.1016/0743-1066(85)90015-9.

Frank Drewes, Kilian Gebhardt, and Heiko Vogler. 2016. EM-training for weighted aligned hypergraph
bimorphisms. In Proceedings of the SIGFSM Workshop on Statistical NLP and Weighted Automata.
Berlin, Germany, pages 60–69. https://www.aclweb.org/anthology/W16-2407.

Kilian Evang and Laura Kallmeyer. 2011. PLCFRS parsing of English discontinuous constituents. In
Proceedings of the 12th International Conference on Parsing Technologies. Dublin, Ireland, pages
104–116. https://www.aclweb.org/anthology/W11-2913.

Daniel Fernández-González and André F. T. Martins. 2015. Parsing as reduction. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers). Beijing, China, pages
1523–1533. https://www.aclweb.org/anthology/P15-1147.

Francis Ferraro, Benjamin Van Durme, and Matt Post. 2012. Toward tree substitution grammars with
latent annotations. In Proceedings of the NAACL-HLT Workshop on the Induction of Linguistic
Structure. Montreal, Canada, pages 23–30. https://www.aclweb.org/anthology/W12-1904.

Kilian Gebhardt, Mark-Jan Nederhof, and Heiko Vogler. 2017. Hybrid grammars for parsing of
discontinuous phrase structures and non-projective dependency structures. Computational Linguistics
43(3):465–520. https://doi.org/10.1162/COLI a 00291.

https://www.aclweb.org/anthology/C10-3009
https://www.aclweb.org/anthology/C10-3009
https://www.aclweb.org/anthology/C10-3009
https://doi.org/10.1016/S0019-9958(69)90065-5
https://doi.org/10.1016/S0019-9958(69)90065-5
https://doi.org/10.1007/s11168-004-7431-3
https://doi.org/10.1007/s11168-004-7431-3
https://doi.org/10.1007/s11168-004-7431-3
https://doi.org/10.1007/s11168-004-7431-3
https://www.aclweb.org/anthology/P13-1015
https://www.aclweb.org/anthology/P13-1015
https://www.aclweb.org/anthology/P13-1015
https://www.aclweb.org/anthology/P13-1015
https://doi.org/10.1162/coli.2007.33.2.201
https://doi.org/10.1162/coli.2007.33.2.201
https://www.aclweb.org/anthology/E17-1118
https://www.aclweb.org/anthology/E17-1118
https://www.aclweb.org/anthology/E17-1118
http://www.cs.columbia.edu/~mcollins/papers/thesis.ps
http://www.cs.columbia.edu/~mcollins/papers/thesis.ps
http://www.cs.columbia.edu/~mcollins/papers/thesis.ps
https://www.aclweb.org/anthology/D17-1172
https://www.aclweb.org/anthology/D17-1172
https://www.aclweb.org/anthology/D17-1172
https://www.jstor.org/stable/2984875
https://www.jstor.org/stable/2984875
https://www.jstor.org/stable/2984875
https://doi.org/10.1016/0743-1066(85)90015-9
https://doi.org/10.1016/0743-1066(85)90015-9
https://www.aclweb.org/anthology/W16-2407
https://www.aclweb.org/anthology/W16-2407
https://www.aclweb.org/anthology/W16-2407
https://www.aclweb.org/anthology/W11-2913
https://www.aclweb.org/anthology/W11-2913
https://www.aclweb.org/anthology/P15-1147
https://www.aclweb.org/anthology/P15-1147
https://www.aclweb.org/anthology/W12-1904
https://www.aclweb.org/anthology/W12-1904
https://www.aclweb.org/anthology/W12-1904
https://doi.org/10.1162/COLI_a_00291
https://doi.org/10.1162/COLI_a_00291
https://doi.org/10.1162/COLI_a_00291

3060

Jonas Groschwitz, Alexander Koller, and Mark Johnson. 2016. Efficient techniques for parsing with tree
automata. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Berlin, Germany, pages 2042–2051. https://www.aclweb.org/anthology/P16-
1192.

Johan Hall and Joakim Nivre. 2008. Parsing discontinuous phrase structure with grammatical functions.
In Bengt Nordström and Aarne Ranta, editors, Advances in Natural Language Processing. Springer
Berlin Heidelberg, Berlin, Heidelberg, pages 169–180. https://doi.org/10.1007/978-3-540-85287-2 17.

Liang Huang and David Chiang. 2005. Better k-best parsing. In Proceedings of the Ninth Inter-
national Workshop on Parsing Technology. Vancouver, British Columbia, Canada, pages 53–64.
https://www.aclweb.org/anthology/W05-1506.

Laura Kallmeyer and Wolfgang Maier. 2013. Data-driven parsing using probabilistic linear context-free
rewriting systems. Computational Linguistics 39(1):87–119. https://doi.org/10.1162/COLI a 00136.

Dan Klein and Christopher D. Manning. 2003. Accurate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computational Linguistics - Volume 1. Sapporo, Japan, pages
423–430. https://www.aclweb.org/anthology/P03-1054.

Donald E. Knuth. 1977. A generalization of Dijkstra’s algorithm. Information Processing Letters 6(1):1 –
5. https://doi.org/10.1016/0020-0190(77)90002-3.

Alexander Koller and Marco Kuhlmann. 2011. A generalized view on parsing and translation. In
Proceedings of the 12th International Conference on Parsing Technologies. Dublin, Ireland, pages
2–13. https://www.aclweb.org/anthology/W11-2902.

Karim Lari and Steve J. Young. 1990. The estimation of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech & Language 4(1):35 – 56. https://doi.org/10.1016/0885-
2308(90)90022-X.

Wolfgang Maier. 2015. Discontinuous incremental shift-reduce parsing. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers). Beijing, China, pages 1202–
1212. https://www.aclweb.org/anthology/P15-1116.

Wolfgang Maier and Timm Lichte. 2016. Discontinuous parsing with continuous trees. In Proceedings of
the Workshop on Discontinuous Structures in Natural Language Processing. San Diego, California,
pages 47–57. https://www.aclweb.org/anthology/W16-0906.

Wolfgang Maier and Anders Søgaard. 2008. Treebanks and mild context-sensitivity. In Proceedings of
the 13th Conference on Formal Grammar (FG-2008). CSLI Publications, Hamburg, Germany, pages
61–76. https://cslipublications.stanford.edu/FG/2008/maier.pdf.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2005. Probabilistic CFG with latent annotations.
In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Ann Arbor,
Michigan, pages 75–82. https://doi.org/10.3115/1219840.1219850.

Mark-Jan Nederhof. 2003. Weighted deductive parsing and Knuth’s algorithm. Computational Linguistics
29(1):135–143. https://doi.org/10.1162/089120103321337467.

Mark-Jan Nederhof and Giorgio Satta. 2004. Kullback-Leibler distance between probabilistic context-free
grammars and probabilistic finite automata. In Proceedings of the 20th International Conference on
Computational Linguistics. Geneva, Switzerland. https://doi.org/10.3115/1220355.1220366.

Mark-Jan Nederhof and Heiko Vogler. 2014. Hybrid grammars for discontinuous parsing. In Proceedings
of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers.
Dublin, Ireland, pages 1370–1381. https://www.aclweb.org/anthology/C14-1130.

Xiaochang Peng, Linfeng Song, and Daniel Gildea. 2015. A synchronous hyperedge replacement grammar
based approach for AMR parsing. In Proceedings of the Nineteenth Conference on Computational
Natural Language Learning. Beijing, China, pages 32–41. https://www.aclweb.org/anthology/K15-
1004.

https://www.aclweb.org/anthology/P16-1192
https://www.aclweb.org/anthology/P16-1192
https://www.aclweb.org/anthology/P16-1192
https://www.aclweb.org/anthology/P16-1192
https://doi.org/10.1007/978-3-540-85287-2_17
https://doi.org/10.1007/978-3-540-85287-2_17
https://www.aclweb.org/anthology/W05-1506
https://www.aclweb.org/anthology/W05-1506
https://doi.org/10.1162/COLI_a_00136
https://doi.org/10.1162/COLI_a_00136
https://doi.org/10.1162/COLI_a_00136
https://www.aclweb.org/anthology/P03-1054
https://www.aclweb.org/anthology/P03-1054
https://doi.org/10.1016/0020-0190(77)90002-3
https://doi.org/10.1016/0020-0190(77)90002-3
https://www.aclweb.org/anthology/W11-2902
https://www.aclweb.org/anthology/W11-2902
https://doi.org/10.1016/0885-2308(90)90022-X
https://doi.org/10.1016/0885-2308(90)90022-X
https://doi.org/10.1016/0885-2308(90)90022-X
https://doi.org/10.1016/0885-2308(90)90022-X
https://www.aclweb.org/anthology/P15-1116
https://www.aclweb.org/anthology/P15-1116
https://www.aclweb.org/anthology/W16-0906
https://www.aclweb.org/anthology/W16-0906
https://cslipublications.stanford.edu/FG/2008/maier.pdf
https://cslipublications.stanford.edu/FG/2008/maier.pdf
https://doi.org/10.3115/1219840.1219850
https://doi.org/10.3115/1219840.1219850
https://doi.org/10.1162/089120103321337467
https://doi.org/10.1162/089120103321337467
https://doi.org/10.3115/1220355.1220366
https://doi.org/10.3115/1220355.1220366
https://doi.org/10.3115/1220355.1220366
https://www.aclweb.org/anthology/C14-1130
https://www.aclweb.org/anthology/C14-1130
https://www.aclweb.org/anthology/K15-1004
https://www.aclweb.org/anthology/K15-1004
https://www.aclweb.org/anthology/K15-1004
https://www.aclweb.org/anthology/K15-1004

3061

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. 2006. Learning accurate, compact, and
interpretable tree annotation. In Proceedings of the 21st International Conference on Computational
Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Sydney,
Australia, pages 433–440. https://doi.org/10.3115/1220175.1220230.

Slav Petrov and Dan Klein. 2007. Improved inference for unlexicalized parsing. In Human Language
Technologies 2007: The Conference of the North American Chapter of the Association for Compu-
tational Linguistics; Proceedings of the Main Conference. Rochester, New York, pages 404–411.
https://www.aclweb.org/anthology/N07-1051.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty. 2014. Introducing the SPMRL 2014 shared task on
parsing morphologically-rich languages. In Proceedings of the First Joint Workshop on Statistical
Parsing of Morphologically Rich Languages and Syntactic Analysis of Non-Canonical Languages.
Dublin, Ireland, pages 103–109. https://www.aclweb.org/anthology/W14-6111.

H. Seki, T. Matsumura, M. Fujii, and T. Kasami. 1991. On multiple context-free grammars. Theoretical
Computer Science 88(2):191–229. https://doi.org/10.1016/0304-3975(91)90374-B.

Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, and Masaaki Nagata. 2012. Bayesian symbol-refined
tree substitution grammars for syntactic parsing. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Jeju Island, Korea, pages 440–448.
https://www.aclweb.org/anthology/P12-1046.

Miloš Stanojević and Raquel Garrido Alhama. 2017. Neural discontinuous constituency parsing.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.
Copenhagen, Denmark, pages 1666–1676. https://www.aclweb.org/anthology/D17-1174.

Christoph Teichmann, Alexander Koller, and Jonas Groschwitz. 2017. Coarse-to-fine parsing for
expressive grammar formalisms. In Proceedings of the 15th International Conference on Parsing
Technologies (IWPT). Pisa, Italy, pages 122–127. https://www.aclweb.org/anthology/W17-6317.

Christoph Teichmann, Kasimir Wansing, and Alexander Koller. 2016. Adaptive importance sampling
from finite state automata. In Proceedings of the SIGFSM Workshop on Statistical NLP and Weighted
Automata. Berlin, Germany, pages 11–20. https://www.aclweb.org/anthology/W16-2402.

Andreas van Cranenburgh, Remko Scha, and Rens Bod. 2016. Data-oriented parsing with
discontinuous constituents and function tags. Journal of Language Modelling 4(1):57–111.
https://doi.org/10.15398/jlm.v4i1.100.

Tim Vieira and Jason Eisner. 2017. Learning to prune: Exploring the frontier of fast and
accurate parsing. Transactions of the Association for Computational Linguistics 5:263–278.
https://aclweb.org/anthology/Q17-1019.

Krishnamurti Vijay-Shanker, David J. Weir, and Aravind K. Joshi. 1987. Characterizing structural
descriptions produced by various grammatical formalisms. In Proceedings of the 25th Annual Meet-
ing of the Association for Computational Linguistics. Stanford, California, USA, pages 104–111.
https://doi.org/10.3115/981175.981190.

https://doi.org/10.3115/1220175.1220230
https://doi.org/10.3115/1220175.1220230
https://doi.org/10.3115/1220175.1220230
https://www.aclweb.org/anthology/N07-1051
https://www.aclweb.org/anthology/N07-1051
https://www.aclweb.org/anthology/W14-6111
https://www.aclweb.org/anthology/W14-6111
https://www.aclweb.org/anthology/W14-6111
https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1016/0304-3975(91)90374-B
https://www.aclweb.org/anthology/P12-1046
https://www.aclweb.org/anthology/P12-1046
https://www.aclweb.org/anthology/P12-1046
https://www.aclweb.org/anthology/D17-1174
https://www.aclweb.org/anthology/D17-1174
https://www.aclweb.org/anthology/W17-6317
https://www.aclweb.org/anthology/W17-6317
https://www.aclweb.org/anthology/W17-6317
https://www.aclweb.org/anthology/W16-2402
https://www.aclweb.org/anthology/W16-2402
https://www.aclweb.org/anthology/W16-2402
https://doi.org/10.15398/jlm.v4i1.100
https://doi.org/10.15398/jlm.v4i1.100
https://doi.org/10.15398/jlm.v4i1.100
https://aclweb.org/anthology/Q17-1019
https://aclweb.org/anthology/Q17-1019
https://aclweb.org/anthology/Q17-1019
https://doi.org/10.3115/981175.981190
https://doi.org/10.3115/981175.981190
https://doi.org/10.3115/981175.981190

3062

A Appendix

In this appendix we provide auxiliary calculations and definitions, an example in which the max-rule-
product parsing objective is ill-defined, and choices of hyperparameters and preprocessing steps used
during the experiments.

A.1 Computing the probability of an object using its chart
In Section 2.2 we state that P (a | G, p) =

∑
ξ∈L(Ga)W(Ga,p◦ϕa)(ξ). This follows from:∑

ξ∈parsesG(a)

W(G,p)(ξ) =
∑

ξ∈parsesG(a)

∑
r∈runsvG(ξ)

∏
π∈pos(ξ)

p(ruleπr)

=
∑

ξ∈L(Ga)

∑
r′∈runsvGa (ξ)

∏
π∈pos(ξ)

p(ruleπϕa◦r′)

=
∑

ξ∈L(Ga)

∑
r′∈runsvGa (ξ)

∏
π∈pos(ξ)

(p ◦ ϕa)(ruleπr′)

=
∑

ξ∈L(Ga)

W(Ga,p◦ϕa)(ξ)

A.2 Approximation of the likelihood loss.
Let Gc be the RTG at the beginning of a particular split/merge cycle and Gf = µ−1sp (Gc) be the RTG
after splitting. We describe how ∆(B1, B2) is computed for a pair B1 and B2 of nonterminals in Gf

that are candidates for merging. Similar to Section 3.3, for each a ∈ A we assume grammar morphisms
µ′sp : Gfa → Gca, ϕa : Gca → Gc, and ϕ′a : Gfa → Gf which satisfy ϕa ◦ µ′sp = µsp ◦ ϕ′a.

Firstly, we compute merge factors p1 and p2 based on the relative frequency of B1 and B2 where

pi =
freq(Bi)

freq(B1) + freq(B2)
.

To compute the expected frequency of Bi (i ∈ {1, 2}), we sum over the expected frequency of each
occurrence B′i of Bi in some chart Gfa :

freq(Bi) =
∑
a∈A

cA(a) ·
∑

B′i∈ϕ′a
−1(Bi)

α(B′i) · β(B′i)

β(S
Gfa

)
.

Secondly, we consider pairs (B′1, B
′
2) of occurrences of B1 and B2 in some chart Gfa such that µ′sp(B′1) =

µ′sp(B′2). For each such pair, we introduce a hypothetical nonterminal B′ which symbolizes merging
just B′1 and B′2. Its inside and outside weight is obtained by α(B′) = α(B′1) + β(B′2) and β(B′) =
p1 · β(B′1) + p2 · β(B′2), respectively.

Using these hypothetical nonterminals, we approximate the loss in likelihood due to merging B1 and
B2 by accumulating likelihood losses due to merging pairs of occurrences:

∆(B1, B2) =
∏
a∈A

(B′1,B
′
2) in Gfa

β(S
Gfa

) + α(B′) · β(B′)−
(∑

i∈{1,2} α(B′i) · β(B′i)
)

β(S
Gfa

)

cA(a).
In the above formula, the numerator shall express the probability of the chart after merging and the
denominator expresses the probability before merging. If a nonterminal A′ occurs more than once in a run
of the chart, then the sum of the probability of all runs that containA′ is not equal to its expected frequency
α(A′) · β(A′). Thus, the above formula is reasonable under the assumption that each nonterminal A′ in
NGa occurs at most once in a run on a derivation tree in L(Gfa). This assumption is violated if, e.g., the
chart contains a chain rule A′ → f(A′).

3063

A.3 The max-rule-product objective can be ill-defined
We give an example of a CFG with chain rules where max-rule-product is an ill-defined parsing objec-
tive. Consider the refined CFG Gfwith nonterminals {S,A1, A2, A3}, terminals {a}, and rules with
probabilities:

S → Ai #1.0 if i = 1 else 0.0

Ai → Aj #1.0 if j = i+ 1 else 0.0

Ai → a #1.0 if i = 3 else 0.0

Consider the chart Gfa for the string a which is isomorphic to Gf . The inside and outside weight of
each nonterminal of Gfa is 1.0. If we merge A1, A2, and A3 to A and project weights according to the
max-rule-product principle, then we obtain the CFG Gca with weights

S → A #1.0

A→ A #2.0

A→ a #1.0

Now the weight of some parse tree of Gca is exponential in the number of occurrences of the chain rules
A→ A it contains. Consequently, there cannot be a best tree.

A.4 Hyperparameters and preprocessing
The TiGer corpus is preprocessed before grammar induction. Specifically, punctuation tokens are attached
to lower nodes in order to reduce the number of discontinuous brackets using disco-dop. Also, we replace
words with less than 4 occurrences in the training corpus by a fresh “UNKNOWN” symbol. In addition,
the training set and the validation set are enriched by copies of the constituent trees where every word is
replaced by the “UNKNOWN” symbol. These copies get assigned frequency 0.1 in either set.

During the split/merge algorithm EM training is applied as follows. The probability assignment pi of
the i-th epoch (m ≤ i ≤ 20) with the best validation likelihood is selected as result. We set m = 2 after
smoothing and m = 5 otherwise. Also, we skip all remaining EM epochs, if validation likelihood dropped
in 6 consecutive epochs. When computing validation likelihood, we ignore trees with probability 0 except
after smoothing.

