@inproceedings{kabbach-etal-2018-butterfly,
title = "Butterfly Effects in Frame Semantic Parsing: impact of data processing on model ranking",
author = "Kabbach, Alexandre and
Ribeyre, Corentin and
Herbelot, Aur{\'e}lie",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1267/",
pages = "3158--3169",
abstract = "Knowing the state-of-the-art for a particular task is an essential component of any computational linguistics investigation. But can we be truly confident that the current state-of-the-art is indeed the best performing model? In this paper, we study the case of frame semantic parsing, a well-established task with multiple shared datasets. We show that in spite of all the care taken to provide a standard evaluation resource, small variations in data processing can have dramatic consequences for ranking parser performance. This leads us to propose an open-source standardized processing pipeline, which can be shared and reused for robust model comparison."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kabbach-etal-2018-butterfly">
<titleInfo>
<title>Butterfly Effects in Frame Semantic Parsing: impact of data processing on model ranking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Kabbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Corentin</namePart>
<namePart type="family">Ribeyre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Knowing the state-of-the-art for a particular task is an essential component of any computational linguistics investigation. But can we be truly confident that the current state-of-the-art is indeed the best performing model? In this paper, we study the case of frame semantic parsing, a well-established task with multiple shared datasets. We show that in spite of all the care taken to provide a standard evaluation resource, small variations in data processing can have dramatic consequences for ranking parser performance. This leads us to propose an open-source standardized processing pipeline, which can be shared and reused for robust model comparison.</abstract>
<identifier type="citekey">kabbach-etal-2018-butterfly</identifier>
<location>
<url>https://aclanthology.org/C18-1267/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>3158</start>
<end>3169</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Butterfly Effects in Frame Semantic Parsing: impact of data processing on model ranking
%A Kabbach, Alexandre
%A Ribeyre, Corentin
%A Herbelot, Aurélie
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F kabbach-etal-2018-butterfly
%X Knowing the state-of-the-art for a particular task is an essential component of any computational linguistics investigation. But can we be truly confident that the current state-of-the-art is indeed the best performing model? In this paper, we study the case of frame semantic parsing, a well-established task with multiple shared datasets. We show that in spite of all the care taken to provide a standard evaluation resource, small variations in data processing can have dramatic consequences for ranking parser performance. This leads us to propose an open-source standardized processing pipeline, which can be shared and reused for robust model comparison.
%U https://aclanthology.org/C18-1267/
%P 3158-3169
Markdown (Informal)
[Butterfly Effects in Frame Semantic Parsing: impact of data processing on model ranking](https://aclanthology.org/C18-1267/) (Kabbach et al., COLING 2018)
ACL