@inproceedings{sadeghi-scheutz-2018-sensitivity,
title = "Sensitivity to Input Order: Evaluation of an Incremental and Memory-Limited {B}ayesian Cross-Situational Word Learning Model",
author = "Sadeghi, Sepideh and
Scheutz, Matthias",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1268",
pages = "3170--3180",
abstract = "We present a variation of the incremental and memory-limited algorithm in (Sadeghi et al., 2017) for Bayesian cross-situational word learning and evaluate the model in terms of its functional performance and its sensitivity to input order. We show that the functional performance of our sub-optimal model on corpus data is close to that of its optimal counterpart (Frank et al., 2009), while only the sub-optimal model is capable of predicting the input order effects reported in experimental studies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sadeghi-scheutz-2018-sensitivity">
<titleInfo>
<title>Sensitivity to Input Order: Evaluation of an Incremental and Memory-Limited Bayesian Cross-Situational Word Learning Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sepideh</namePart>
<namePart type="family">Sadeghi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Scheutz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a variation of the incremental and memory-limited algorithm in (Sadeghi et al., 2017) for Bayesian cross-situational word learning and evaluate the model in terms of its functional performance and its sensitivity to input order. We show that the functional performance of our sub-optimal model on corpus data is close to that of its optimal counterpart (Frank et al., 2009), while only the sub-optimal model is capable of predicting the input order effects reported in experimental studies.</abstract>
<identifier type="citekey">sadeghi-scheutz-2018-sensitivity</identifier>
<location>
<url>https://aclanthology.org/C18-1268</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>3170</start>
<end>3180</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sensitivity to Input Order: Evaluation of an Incremental and Memory-Limited Bayesian Cross-Situational Word Learning Model
%A Sadeghi, Sepideh
%A Scheutz, Matthias
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F sadeghi-scheutz-2018-sensitivity
%X We present a variation of the incremental and memory-limited algorithm in (Sadeghi et al., 2017) for Bayesian cross-situational word learning and evaluate the model in terms of its functional performance and its sensitivity to input order. We show that the functional performance of our sub-optimal model on corpus data is close to that of its optimal counterpart (Frank et al., 2009), while only the sub-optimal model is capable of predicting the input order effects reported in experimental studies.
%U https://aclanthology.org/C18-1268
%P 3170-3180
Markdown (Informal)
[Sensitivity to Input Order: Evaluation of an Incremental and Memory-Limited Bayesian Cross-Situational Word Learning Model](https://aclanthology.org/C18-1268) (Sadeghi & Scheutz, COLING 2018)
ACL