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Abstract

Question Answering over Knowledge Bases (KB-QA), which automatically answer natural lan-
guage questions based on the facts contained by a knowledge base, is one of the most important
natural language processing (NLP) tasks. Simple questions constitute a large part of questions
queried on the web, still being a challenge to QA systems. In this work, we propose to conduct
pattern extraction and entity linking first, and put forward pattern revising procedure to mitigate
the error propagation problem. In order to learn to rank candidate subject-predicate pairs to en-
able the relevant facts retrieval given a question, we propose to do joint fact selection enhanced
by relation detection. Multi-level encodings and multi-dimension information are leveraged to
strengthen the whole procedure. The experimental results demonstrate that our approach sets a
new record in this task, outperforming the current state-of-the-art by an absolute large margin.

1 Introduction

As the amount of the knowledge bases (KBs) grows, such as DBpedia1, Freebase2, and WikiData3,
people are paying more attention to seeking effective methods for accessing these precious intellectu-
al resources. While knowledge bases are usually very large and not easily accessible for users. KB-
QA (Unger et al., 2014), which takes natural language as query language, is a more user-friendly solu-
tion, and has become a research focus in recent years. At the same time the growing amount of data has
led to a heterogeneous data landscape where QA systems struggle to keep up with the volume, variety
and veracity of the underlying knowledge.

Simple question answering over knowledge bases, which answers a question using a single fact in
knowledge bases, is not simple at all and far from being solved. This is the setup of the SimpleQuestions
benchmark recently presented by Bordes et al. (2015). The task of KB-QA for simple questions could
be put as follows. Let G = (si, pi, oi) be a background knowledge base represented as a set of triples,
where si represents a subject entity, pi a predicate (also denoted as relation), and oi an object entity.
Given a natural language question represented as an utterance q = w1, ..., wn, the task of simple question
answering is to find a triple (ŝ, p̂, ô) ∈ G such that ô is the intended answer for question q. This task can
be formulated to finding the best matches of subject ŝ and predicate p̂.

ŝ, p̂ = argmax
s,p∈G

p(s, p|q) (1)

The setup of using a single fact to answer a question seems simple, while there are many existing
challenges faced by QA systems. One challenge is the extremely complex language used in question
utterance. On one hand, in many different ways natural language is used to express the same information
need. On the other hand, the same word used in different sentences may express different meaning. For
example, two questions “who created Apple Inc.” and “who started Apple” have the same meaning and
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1http://dbpedia.org
2https://developers.google.com/freebase/
3https://www.wikidata.org
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in order to retrieve the correct answer we need to map the meaning conveyed by them to the “founder”
relation in KB. The word “Apple” in the questions refers to the “Apple Corporation” instead of the fruit
“apple”. Natural language is complex while KB is much more universal. Another challenge is the vast
amount of facts in large scale KB.

KB is quite large to some extent. KB has a huge number of fact triples and entities. A common and
effective way to remain only a small subset of facts and entities is to conduct entity linking of a question
over KB firstly. There are some work conducting entity linking by searching n-gram words of a question
among all entity names (Bordes et al., 2015; Golub and He, 2016). While some other work propose a
special-purpose sequence labeling network to focus on more probable candidates in question utterance,
then linking them to entities (Dai et al., 2016; Yin et al., 2016b). Previous approaches assume that their
preceding steps are correct to produce a good result for next procedure. While it should be pointed
out that both the labeling and the entity linking process may lead to error propagation problems. For
example, if the previous steps provide a wrong labeling result or don’t recall the gold subject entity in
the generated candidates, the following procedure can’t make a good choice to retrieve the gold subject
and predicate pair.

Faced with these problems and following previous work, we propose to do pattern extraction and
entity linking first to extract possible entity mention and question pattern4, and reduce the large number
of candidate entities in KB. Due to the performance of the pattern extraction step, we observe that there
is a certain proportion of bad cases in the extracted mention-pattern pairs. So we propose a novel pattern
revising procedure to improve the quality of the extracted patterns. Then the extracted mentions are used
to identify candidate entities in KB that the question refers to. This is the entity linking procedure. The
candidate fact pool is formed by incorporating all the predicates connected to the corresponding subjects.
The next step is to select the gold subject and predicate from the candidate fact pool.

For one question, there may be a large set of candidate entities. It is unrealistic to use all of them
to generate candidate facts in practice. In this case, we need to let the candidate entities which are
more likely to generate the gold fact get ahead of the rest. Previous methods rarely considered the
information contained in the question pattern or candidate entities when doing subject selection. So
we conduct relation detection, which identifies the KB predicate that a question utterance refers to, to
reorder the entity linking results. Enhanced entity linking provides a strong support to generate high-
quality candidate subjects.

In SimpleQuestions benchmark, a question, such as “which release was desperado the release track
off of?”, asks a direct relation of an entity called “desperado”. While there are dozens of entities named
“desperado” in Freebase which linked to different types and predicates5. Previous work either conduct
relation inference firstly (Dai et al., 2016), or conduct entity linking firstly (Yih et al., 2015) may lead
to no recall problem. In our framework, we propose to do joint fact selection to alleviate the problem.
We leverage entities’ name information and type information to represent entities’ different aspects. As
for predicates, we use the unique relation name and dispersive words information. In order to repre-
sent the sentence utterance properly, char-level and word-level encodings both are incorporated. The
experimental results demonstrate the effectiveness of the proposed approach.

To sum up, our main contributions are: (1) We propose to conduct pattern extraction and entity linking,
and put forward pattern revising procedure to mitigate the error propagation problem. (2) In order to
learn to rank candidate subject-predicate pairs to enable the relevant facts retrieval given a question,
we propose to do joint fact selection enhanced by relation detection. Multi-level encodings and multi-
dimension information are leveraged to strengthen the whole procedure. (3) Our approach sets a new
record in Simple KB-QA task, outperforming the current state-of-the-art by an absolute large margin.

4The question pattern of a question is produced by substituting the possible entity mention with a special token
“#head entity#” in original question. For example, for the question “what position does carlos gomez play”, the correct entity
mention is “carlos gomez”, and the pattern should be “what position does #head entity# play”.

5Some predicate sets linked to these entities which has the same name “desperado”, contains the gold predicate “mu-
sic/release track/recording” in common.
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2 Related Work

The research of KB-QA has evolved from earlier domain-specific QA (Zelle and Mooney, 1996; Tang et
al., 2001) to open-domain QA based on large-scale KB. There are two mainstream research directions
for the KB-QA task. One of the promising approaches is semantic parsing (Cai and Yates, 2013; Yih
et al., 2015; Yih et al., 2016; Reddy et al., 2016), which uses logic language CCG (zettlemoyer and
Collins, 2009; zettlemoyer and Collins, 2012; Kwiatkowski et al., 2013; Reddy et al., 2014; Choi et al.,
2015) or DCS (Berant et al., 2013) to map a question to its formal logical form to query on a KB. The
other category exploit vector space embedding approaches (Bordes et al., 2014a; Bordes et al., 2014b;
Bordes et al., 2015; Dong et al., 2015; Xu et al., 2016a; Xu et al., 2016b; Hao et al., 2017; Lukovnikov et
al., 2017) to measure the semantic similarity between question utterance and candidate resources in the
background KB, such that the correct supporting evidence will be the nearest neighbor of the question
utterance in the learned vector space.

Instead of measuring the similarity between a question and an evidence triple with a single model, Yih
et al. (2015) adopt a multi-stage approach. In each stage, one element of the triple is compared with the
question utterance to produce a partial similarity score by a dedicated model. Then these partial scores
are combined to generate the overall measurement condition. Dong et al. (2015) use three columns of
CNNs to represent questions respectively when dealing with different answer aspects. Xu et al. (2016a;
2016b) incorporate Wikipedia free text to address KB-QA problems, in which they use multi-channel
CNNs to extract relations. Dai et al. (2016) employ a conditional factoid factorization by inferring the
target relation first and then the target subject associated with the candidate relations. Yin et al. (2016b)
stack an attentive maxpooling above convolution layer to model the match of candidate predicates and
questions. Lukovnikov et al. (2017) train a neural network, which contains a nested word/character-level
question encoder, for answering simple questions in an end-to-end manner. In this work, we propose
a two-stage framework, which exploit multi-dimension information leveraging multi-level encodings to
compute semantic similarity, to tackle the problem of simple KB-QA.

Relation detection for KB-QA starts with feature-rich approaches (Yao and Van Durme, 2014) towards
usages of vector space embedding models (Yih et al., 2016; Xu et al., 2016a; Golub and He, 2016; Yu et
al., 2017). Actually many of the mentioned researches could support large relation dictionary, fitting the
goal of open-domain question answering. Some work (Yin et al., 2016b; Yu et al., 2017) split relations
into word sequences for single-relation detection. Golub and He (2016) propose a generative model
for relation detection which predicts relation in a character-level sequence-to-sequence manner. Many
researches have proved that relation detection benefit for KB-QA task. In our approach, we use relation
detection enhance entity linking results, generating a more focused candidate subject set.

Conducting fact selection in KB-QA is inspired by work on answer selection (Yu et al., 2014; Yin et
al., 2016b) which looks for correct answers from some candidates given a question. In machine com-
prehension (Yin et al., 2016a) scenario, the answer candidates are raw text, not structured information
as facts in KB are. In our joint fact selection procedure, we leverage multi-level encodings of question
utterance and subject-predicate pairs to measure their similarity in order to get the retrieved answer.

3 Overview of Simple Question Answering

The goal of simple KB-QA task could be formulated as follows. Given a natural language question q,
the system returns the answer (ŝ, p̂). The architecture of our proposed framework is shown in Figure 1,
which illustrates the basic flow of our approach. In our approach, we conduct pattern-revising enhanced
pattern extraction and entity linking to identify each question’s corresponding pattern and mention, and
generate candidate subjects together with their corresponding candidate facts from Freebase. Then a
multi-level encoding based deep neural network is employed to select fact from the generated candidate
facts, i.e. the joint fact selection procedure, in which relation detection is leveraged to reorder the entity
linking results. The similarity score between the question utterance and each corresponding candidate
fact is calculated, and the candidate fact with the highest score will be selected as the final predicted
answer to the question.

Freebase (Bollacker et al., 2008) is utilized as our background KB, which has more than 3 billion facts,
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question : what kind of music is on bo diddley

Mention: bo diddley Pattern: what kind of music is on #head_entity# 

Pattern Base

Candidate Subjects

(resorted)

m. 017m9xx

m. 01k0zzv

𝑠1
𝑠2
𝑠3
𝑠4
𝑠5

Entity Linking

m.0f73gyb

m.01vtg4q

Candidate Facts

⋮

⋮

m. 26k0j1

<𝑠1, music/album/genre>
<𝑠1, music/album/artist>
<𝑠1, music/album/release_type>

⋮

Joint Fact Selection

Freebase

Predicted fact:
<𝑠1, 𝑝1>

…

Pattern 

ExtractionMention: on bo diddley Pattern: what kind of music is #head_entity#

Sequence Labeling

Pattern

Revising 

<𝑠2, people/person/profession >
<𝑠2, music/composer/compositions >

Figure 1: The overview of our proposed simple question answering approach, which is tailored via first
stage of pattern extraction and entity linking enhanced by pattern revising, and second stage of joint
fact selection which learns to rank candidate subject-predicate pairs to enable the relevant facts retrieval
given a question.

and is used as the supporting KB for many QA tasks. We use SimpleQuestions dataset as our benchmark.
The SimpleQuestions dataset consists of more than one hundred thousand simple questions which can
be answered with a single fact in Freebase. We will give more detail in Section 6.1.

4 Pattern Extraction and Entity Linking

Given a question, two problems should be carefully tackled: (1) identifying the mention span in the
question that refers to an entity in KB, (2) and generating candidate entities in KB that the question
should refers to. So we conduct pattern extraction and entity linking procedure, which is enhanced by
pattern revising. This is the first stage of our approach.

Given a question, the first stage should provide a set of top-N subject candidates. Generally, we should
use all N-grams to retrieve the candidate subjects in KB in order to guarantee the recall rate. In this case,
the candidate space is restricted to entities whose name or alias matches an n-gram of the question, as in
(Bordes et al., 2015). However, the candidate pool is too noisy due to the large number of non-subject-
mention n-grams. So we try to find a method to split the question utterance into two parts: mention span
and question pattern. Mention span should be relatively rare words that refers to an entity in KB, while
question pattern usually consists of common words that reflect the relation the question utterance refers
to.

Inspired by previous work (Dai et al., 2016; Yin et al., 2016b), the problem could be treated as a
sequential labeling task in which we aim to label the relatively rare continuous words of mention span to
one kind, and label the relatively common words which belong to question pattern to another kind. This
is the question pattern extraction step. The key idea is to train a model to predict the continuous word of
text mention span which may refers to the topic entity, similar as Name Entity Recognition (NER). In the
training set of SimpleQuestions, the topic entity of each question is labeled. We map the gold entity back
to the text to label the text mention span for each question, then train a BiLSTM-CRF model to detect
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the subject entity mention span in question utterance. After substituting each subject entity mention span
by “#head entity#”, we get the question pattern for each question. Each question is split into (mention,
pattern) pair. The extracted patterns are taken in the pattern base.

4.1 Pattern Revising

Due to the performance of sequential labeling model, there are a certain portion of bad cases in our
(mention, pattern) pairs result. The more common kind of bad patterns are the ones that have obvious
mistakes together with the wrong labeled mention span. The more extreme error type is that, for instance,
mention is the question utterance and pattern is null. Based on the principle that question patterns which
consist of common words should occur in dataset more than one time and the more times a pattern
appears the more likely it is to be correct, we propose a novel pattern revising procedure to correct
wrong patterns in order to increase the proportion of “good patterns”, following the steps illustrated in
Algorithm 16. We keep all the extracted pattern which appears more than one time as the pattern base
Pn′ , and all the original questions as the sentence utterance base Qn. For each question in the sentence
utterance base, we reappraise its extracted pattern and try to find whether we can find a more suitable
pattern or not.

Algorithm 1 Pattern Revising
Input:

The set of extracted pattern base, Pn′ ;
The set of original question utterance base, Qn;

Output:
The set of the revised Question-Pattern base, QP ;

1: for each sentence utterance q ∈ Qn do
2: for each candidate pattern p ∈ Pn′ do
3: split p according to “#head entity#”;
4: if all split results are contained in q and p, q satisfy consistency policy then
5: add p to candidate pattern set qcp
6: end if
7: end for
8: if |qcp| == 1 then
9: set p ∈ qcp as pattern qp

10: else
11: calculate word match count for each p ∈ qcp
12: select p with max word match count as pattern qp
13: end if
14: add (q, qp) to QP

15: end for

After getting all the revised pattern, we extract their corresponding mention span for each question
utterance. The mention span is used to link entities in KB. Based on the mention span, we use each
word of it to retrieve subject entities whose names contain this word, deriving the longest consecutive
common subsequence for each candidate subject entity. Then we rank the candidate subject entities
according to each entity’s longest consecutive common subsequence, similarly as Yin et al. (2016b) did.
Top-M ranked entities are kept for each question, denoted as C ′e, and their scores for ranking are denoted
as slinker(e, q).

6The consistency policy means that the split results combine the words which are in the position of “#head entity#” should
equal to the original question utterance. It is not allowed to have redundant words.
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5 Joint Fact Selection

5.1 Relation Detection enhanced Subject Candidates

For one question, there may be a large set of candidate entities. It’s unrealistic to use all of them to gen-
erate candidate facts in practice. We need to let the candidate entities which are more likely to generate
the gold fact get ahead of the rest. So we conduct relation detection to resort the subject candidates. We
train a relation detection network which maps each question utterance to their most possible predicate.
Predicates are represented from different granularity: predicate-level and word-level. Predicate-level is
represented by the predicate name as a single token, while word-level is represented by splitting predi-
cate name into word sequence. Word-level encoding serves as a supplement to predicate-level encoding,
mitigating data sparsity7.

We use question utterance as input for a relation detector to score all predicates connected to entities
in C ′e, for each question. The similarity score srel(r, q) is computed using cosine distance between the
LSTM-based encoding of question utterance and the predicate embedding rpred. We extract candidate
subjects’ notable type on behalf of candidate subjects’ type information. Then word-level LSTM-based
encoder is leveraged to get the type information embedding:

rtype = ENCtype(w1, w2, ...) (2)

We represent predicate from different granularity: predicate-level and word-level, jointly considering the
corresponding candidate subject’s type information:

rpred = [epred−lev;ENCword−lev(w1, w2, ...); rtype] (3)

For each entity e ∈ C ′e and its associated relation Re, we generate the final rank score:

srank(e, q) = slinker(e, q) + α(max
r∈Re

srel(r, q) + β) (4)

where α and β are constant hyperparameters. Finally top-N (N < M ) ranked entities are kept for each
question to generate fact pool, denoted as Cs.

For each candidate subject entity s in Cs and its associated predicate set Ps, we can generate can-
didate fact pairs (s, p) (p ∈ Ps). Then for each question, we have all candidate fact pair pool C(s,p).
From a global perspective, the last is fact selection problem, also a matching task. Given a ques-
tion q (mention, pattern) and sets of candidate subject entities and predicates, Cs = {s1, ..., sn} and
Cp = {p1, ..., pm} respectively, our fact selection model should jointly returns the subject and predicate
that matches the question best. The calculation process is shown in the Figure 2.

5.2 Subject Matching Network

Entity names are used to calculate similarity score with the mention span detected in question utterance.
Since the coverage of word embeddings is limited, many words in entity names are out-of-vocabulary
(OOV) words, so we leverage character-level RNN-based encoding (the string is seen as a sequence
of characters) for mention span and candidate subjects’ names, mitigating the high prevalence of OOV
problem.

As illustrated in Figure 2, we first look up a character embedding matrix Ec, which is randomly
initialized and updated during the training process, to get the character embeddings for the entity name
and the mention span. Then the embeddings are fed into an unidirectional LSTM networks, where the
last hidden state is taken as the encoding of current sequences. Then we compute cosine similarity
tsubj(s, q) between the encodings of the entity name and the mention span in string surface-form.

7There are a certain portion of predicates’ names not appearing in training data.
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Word Embedding Matrix 𝐸𝑤

carlos gomez what position does #head_entity# play  

mention pattern

carlos gómez baseball / baseball _ player / position _ s  

candidate subject candidate predicate

Character Embedding Matrix 𝐸𝑐

…

matchCosine similarity

Predicate Embedding Matrix 𝐸𝑃

matchCosine similarity

Figure 2: The overview of the proposed fact selection procedure. The mention span in the question
utterance and the name of candidate subject are encoded using char-level encoder, then cosine distance
is calculated to represent their similarity score. The sentence encoder for question pattern is in a nested
structure, both leverage each word’s char-level encoding and word embedding. The predicate encoder is
similar as in 5.1, utilizing predicate-level encoding and word-level encoding.

5.3 Predicate Matching Network
Predicate matching network tries to match the patterns extracted from question utterance with the corre-
sponding candidate predicates.
[Question pattern encoder] The question pattern encoder maps the question pattern to its corresponding
predicate in the vector space. The process is done by using a LSTM based encoder network.

As for word representation in pattern utterance, we exploit a nested hierarchical encoding manner,
leveraging both character-level and word-level information of each word in question pattern. Char-level
encoder is first employed to get the representation for each word, which is a microcosmic operation. Then
the microcosmic encoding on character level is concatenated with the macroscopical word embedding,
which is randomly initialized and updated during the training process, to get the representation of each
word:

mi = [ewi ;ENCchar−lev(c1, ..., ct)] (5)

This is the way how we get the nested word embeddings. For sentence level encoding, we use word-level
LSTM encoder network to get question pattern representation:

rpattern = ENCpattern(m1, ...,mn) (6)

[Predicate encoder] In the matching procedure, we incorporate the candidate predicate’s hierarchical
encoding information to measure similarity with question pattern. This is similar with what we did in
Section 5.1.
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We represent predicate from different granularity: predicate-level and word-level. In detail, the micro-
cosmic encoding on word-level is done by using a word-level LSTM based encoder network. Then the
encoding is concatenated with its upper macro predicate-level encoding:

rpred = [epred−lev;ENCword−lev(w1, w2, ...)] (7)

Both predicate-level and word-level encodings are useful to represent the predicate properly. We compute
cosine similarity between rpred and rpattern to get the matching score tpred((s, p), q).

5.4 Training

The overall ranking score of a fact triple t is S(t, q) = tsubj(s, q) + tpred((s, p), q). Our objective is to
minimize the ranking loss:

Lq,t,t′ = [γ + S
(
t′, q

)
− S (t, q)]+ (8)

where γ is a hyper-parameter, t′ is a negative triple. Our fact pool consists of all facts whose subject
entity is in the top-N entity candidates. For train, we sample 200 negative facts for each ground truth
fact; and keep all candidate facts for valid and test.

6 Experiments

6.1 Dataset and Evaluation

SimpleQuestions benchmark is a typical Simple QA task, which provides a set of simple questions that
can be answered by a single Freebase triple8. This dataset is split into three parts: train (75,910 instances),
valid (10,845 instances) and test (21,687 instances) sets. The benchmark also provides two subsets of
Freebase: FB2M (2,150,604 entities, 6,701 predicates, 14,180,937 atomic fact triples), FB5M (4,904,397
entities, 7,523 predicates, 22,441,880 atomic fact triples).

The evaluation metric is accuracy. Only a fact that matches the ground truth answer in both subject
and predicate is counted as correct.

accuracy =

∑N
i=1 1[(ŝi,p̂i)=(si,pi)]

N
(9)

6.2 Experimental Settings

In our approach, three types of embedding matrices are utilized: character embedding matrix, word
embedding matrix, and predicate-level KB recource embedding matrix (i.e., the predicate embedding
matrix). All of them are randomly initialized and updated during training process. The dimension
of character embedding and predicate embedding is set to 100, and 200 for word embedding matrix.
The hidden layer size of LSTMs is consistent to their corresponding dimension of the sequences to
be processed. The candidate subjects number N is 20. We employ Adagrad (Duchi et al., 2011) to
minimize the hinge training loss, where the margin γ is set to 1.0, and negative sample number is 200.
All hyperparameters are determined according to the performance on the validation set.

6.3 Results

To demonstrate the effectiveness of the proposed approach, we compare our method with state-of-the-art
systems.

Bordes et al. (2015) proposed an implementation of memory network for SimpleQuestions task. Golub
and He (2016) tackled Simple QA using a character-level attention-based encoder-decoder LSTM model.
A RNN-based approach was proposed by Dai et al. (2016), which utilized a focused pruning method
called CFO. Yin et al. (2016b) leveraged an attentive CNN model to deal with the problem of Simple
QA, and achieved best experimental result in previous state-of-the-art systems. Lukovnikov et al. (2017)
adopted an end-to-end neural network, achieving a relatively good result.

8The object entity in the fact triple is the answer to the question utterance.
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Approach Setting Accuracy

Dai et al. (2016) N-Gram+ 62.6∗

Bordes et al. (2015) end-to-end 62.7
Yin et al. (2016b) passive linker 68.3
Golub and He (2016) end-to-end 70.9
Lukovnikov et al. (2017) end-to-end 71.2
Dai et al. (2016) focused pruning 75.7∗

Yin et al. (2016b) attentive pooling 76.4

Our approach pattern-revising + joint fact selection 80.2

Table 1: Comparison with state-of-the-art systems on SimpleQuestions benchmark. When marked with
(*), accuracy in FB5M setting is given, otherwise FB2M setting results are shown.

The experimental results demonstrate that our framework sets new record in this task, outperforming
the the state-of-the-art by an absolute large margin, achieving a competitive result, as shown in Ta-
ble 1. From the results, we observe that our framework outperforms the latest end-to-end system record
of (Lukovnikov et al., 2017) by 9.0 points, higher than previous best reported system result in (Yin et al.,
2016b) by 3.8 points. While our framework exploits a quite simple and universal model which can be
easily applied to other simple KB-QA tasks, not using attention model or other complex settings.

6.4 Framework Analysis
In this part, we further discuss the impacts of the augmented components which can be removed in our
approach. Table 2 indicates the effectiveness of different parts in the framework.

Approach Setting Accuracy

our approach fully integrated 80.2

our approach w/o pattern revising 77.8
our approach w/o relation detection 77.5
our approach w/o both 74.8

Table 2: The ablation results of our approach.

The accuracy of original system is 74.8%. When augmented with pattern revising procedure, the
accuracy of our framework increase 2.7 points, indicating that our pattern revising algorithm does lift
the quality of generated patterns. The accuracy increase to 77.8 when we use relation detection to resort
the results of subject candidates, showing that incorporating predicate and entity type information for
reranking candidate entities can promote the quality of the recalled candidates. Either component is
important for our framework. The performance decreases obviously when we remove any of them.

6.5 Error Analysis
We perform error analysis on our approach by randomly sampling 100 wrongly answered questions. The
errors can be categorized into 4 types.

The most common kind of error (56%) is the wrongly picked subject entity or predicate. Due to the
performance of pattern extraction and entity linking procedure, the gold entity may not appear in our
candidate subjects. In this case our joint fact selection process can not select the gold subject entity. The
probability of selecting wrong subjects is much higher than selecting a wrong predicate. Another kind
of error case (22%) could be concluded into the “long drug name” error9. Some drug entities’ names are
quite long (more than 15 words), while mention span in question utterance may be much shorter (less
than 4 words). In this case our mention-subject matching network in the joint fact selection process is
failed. The third common error (13%) can be classified as “KB error”. There are some entities with the

9For example, in the question “what is an active ingredient in childrens earache relief”, the labeled gold subject “m.0jxn044”
has a name longer than 15 words.
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same name and the same type, indeed. The KB or the question can’t support more evidence to distinguish
them. The last type of error (9%) is label error. In the dataset there is a small portion of questions which
are repeated, but the labeled subject or predicate is different.

7 Conclusion

In this work, we propose a pattern revising procedure to mitigate the error propagation problem in pattern
extraction and entity linking process. In order to learn to rank candidate subject-predicate pairs to enable
the relevant facts retrieval given a question, we propose to do joint fact selection enhanced by relation
detection. Multi-level encodings and multi-dimension information are leveraged to strengthen the whole
procedure. The experimental results demonstrate the effectiveness of the proposed approach.
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