@inproceedings{zamaraeva-etal-2018-improving,
title = "Improving Feature Extraction for Pathology Reports with Precise Negation Scope Detection",
author = "Zamaraeva, Olga and
Howell, Kristen and
Rhine, Adam",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1302/",
pages = "3564--3575",
abstract = "We use a broad coverage, linguistically precise English Resource Grammar (ERG) to detect negation scope in sentences taken from pathology reports. We show that incorporating this information in feature extraction has a positive effect on classification of the reports with respect to cancer laterality compared with NegEx, a commonly used tool for negation detection. We analyze the differences between NegEx and ERG results on our dataset and how these differences indicate some directions for future work."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zamaraeva-etal-2018-improving">
<titleInfo>
<title>Improving Feature Extraction for Pathology Reports with Precise Negation Scope Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Zamaraeva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kristen</namePart>
<namePart type="family">Howell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Rhine</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We use a broad coverage, linguistically precise English Resource Grammar (ERG) to detect negation scope in sentences taken from pathology reports. We show that incorporating this information in feature extraction has a positive effect on classification of the reports with respect to cancer laterality compared with NegEx, a commonly used tool for negation detection. We analyze the differences between NegEx and ERG results on our dataset and how these differences indicate some directions for future work.</abstract>
<identifier type="citekey">zamaraeva-etal-2018-improving</identifier>
<location>
<url>https://aclanthology.org/C18-1302/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>3564</start>
<end>3575</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Feature Extraction for Pathology Reports with Precise Negation Scope Detection
%A Zamaraeva, Olga
%A Howell, Kristen
%A Rhine, Adam
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F zamaraeva-etal-2018-improving
%X We use a broad coverage, linguistically precise English Resource Grammar (ERG) to detect negation scope in sentences taken from pathology reports. We show that incorporating this information in feature extraction has a positive effect on classification of the reports with respect to cancer laterality compared with NegEx, a commonly used tool for negation detection. We analyze the differences between NegEx and ERG results on our dataset and how these differences indicate some directions for future work.
%U https://aclanthology.org/C18-1302/
%P 3564-3575
Markdown (Informal)
[Improving Feature Extraction for Pathology Reports with Precise Negation Scope Detection](https://aclanthology.org/C18-1302/) (Zamaraeva et al., COLING 2018)
ACL