@inproceedings{ogorman-etal-2018-amr,
title = "{AMR} Beyond the Sentence: the Multi-sentence {AMR} corpus",
author = "O{'}Gorman, Tim and
Regan, Michael and
Griffitt, Kira and
Hermjakob, Ulf and
Knight, Kevin and
Palmer, Martha",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1313/",
pages = "3693--3702",
abstract = "There are few corpora that endeavor to represent the semantic content of entire documents. We present a corpus that accomplishes one way of capturing document level semantics, by annotating coreference and similar phenomena (bridging and implicit roles) on top of gold Abstract Meaning Representations of sentence-level semantics. We present a new corpus of this annotation, with analysis of its quality, alongside a plausible baseline for comparison. It is hoped that this Multi-Sentence AMR corpus (MS-AMR) may become a feasible method for developing rich representations of document meaning, useful for tasks such as information extraction and question answering."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ogorman-etal-2018-amr">
<titleInfo>
<title>AMR Beyond the Sentence: the Multi-sentence AMR corpus</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">O’Gorman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Regan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kira</namePart>
<namePart type="family">Griffitt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ulf</namePart>
<namePart type="family">Hermjakob</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Knight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>There are few corpora that endeavor to represent the semantic content of entire documents. We present a corpus that accomplishes one way of capturing document level semantics, by annotating coreference and similar phenomena (bridging and implicit roles) on top of gold Abstract Meaning Representations of sentence-level semantics. We present a new corpus of this annotation, with analysis of its quality, alongside a plausible baseline for comparison. It is hoped that this Multi-Sentence AMR corpus (MS-AMR) may become a feasible method for developing rich representations of document meaning, useful for tasks such as information extraction and question answering.</abstract>
<identifier type="citekey">ogorman-etal-2018-amr</identifier>
<location>
<url>https://aclanthology.org/C18-1313/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>3693</start>
<end>3702</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AMR Beyond the Sentence: the Multi-sentence AMR corpus
%A O’Gorman, Tim
%A Regan, Michael
%A Griffitt, Kira
%A Hermjakob, Ulf
%A Knight, Kevin
%A Palmer, Martha
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F ogorman-etal-2018-amr
%X There are few corpora that endeavor to represent the semantic content of entire documents. We present a corpus that accomplishes one way of capturing document level semantics, by annotating coreference and similar phenomena (bridging and implicit roles) on top of gold Abstract Meaning Representations of sentence-level semantics. We present a new corpus of this annotation, with analysis of its quality, alongside a plausible baseline for comparison. It is hoped that this Multi-Sentence AMR corpus (MS-AMR) may become a feasible method for developing rich representations of document meaning, useful for tasks such as information extraction and question answering.
%U https://aclanthology.org/C18-1313/
%P 3693-3702
Markdown (Informal)
[AMR Beyond the Sentence: the Multi-sentence AMR corpus](https://aclanthology.org/C18-1313/) (O’Gorman et al., COLING 2018)
ACL
- Tim O’Gorman, Michael Regan, Kira Griffitt, Ulf Hermjakob, Kevin Knight, and Martha Palmer. 2018. AMR Beyond the Sentence: the Multi-sentence AMR corpus. In Proceedings of the 27th International Conference on Computational Linguistics, pages 3693–3702, Santa Fe, New Mexico, USA. Association for Computational Linguistics.