@inproceedings{klie-etal-2018-inception,
title = "The {INCE}p{TION} Platform: Machine-Assisted and Knowledge-Oriented Interactive Annotation",
author = "Klie, Jan-Christoph and
Bugert, Michael and
Boullosa, Beto and
Eckart de Castilho, Richard and
Gurevych, Iryna",
editor = "Zhao, Dongyan",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-2002/",
pages = "5--9",
abstract = "We introduce INCEpTION, a new annotation platform for tasks including interactive and semantic annotation (e.g., concept linking, fact linking, knowledge base population, semantic frame annotation). These tasks are very time consuming and demanding for annotators, especially when knowledge bases are used. We address these issues by developing an annotation platform that incorporates machine learning capabilities which actively assist and guide annotators. The platform is both generic and modular. It targets a range of research domains in need of semantic annotation, such as digital humanities, bioinformatics, or linguistics. INCEpTION is publicly available as open-source software."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="klie-etal-2018-inception">
<titleInfo>
<title>The INCEpTION Platform: Machine-Assisted and Knowledge-Oriented Interactive Annotation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan-Christoph</namePart>
<namePart type="family">Klie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Bugert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beto</namePart>
<namePart type="family">Boullosa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Eckart de Castilho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongyan</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce INCEpTION, a new annotation platform for tasks including interactive and semantic annotation (e.g., concept linking, fact linking, knowledge base population, semantic frame annotation). These tasks are very time consuming and demanding for annotators, especially when knowledge bases are used. We address these issues by developing an annotation platform that incorporates machine learning capabilities which actively assist and guide annotators. The platform is both generic and modular. It targets a range of research domains in need of semantic annotation, such as digital humanities, bioinformatics, or linguistics. INCEpTION is publicly available as open-source software.</abstract>
<identifier type="citekey">klie-etal-2018-inception</identifier>
<location>
<url>https://aclanthology.org/C18-2002/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>5</start>
<end>9</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The INCEpTION Platform: Machine-Assisted and Knowledge-Oriented Interactive Annotation
%A Klie, Jan-Christoph
%A Bugert, Michael
%A Boullosa, Beto
%A Eckart de Castilho, Richard
%A Gurevych, Iryna
%Y Zhao, Dongyan
%S Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico
%F klie-etal-2018-inception
%X We introduce INCEpTION, a new annotation platform for tasks including interactive and semantic annotation (e.g., concept linking, fact linking, knowledge base population, semantic frame annotation). These tasks are very time consuming and demanding for annotators, especially when knowledge bases are used. We address these issues by developing an annotation platform that incorporates machine learning capabilities which actively assist and guide annotators. The platform is both generic and modular. It targets a range of research domains in need of semantic annotation, such as digital humanities, bioinformatics, or linguistics. INCEpTION is publicly available as open-source software.
%U https://aclanthology.org/C18-2002/
%P 5-9
Markdown (Informal)
[The INCEpTION Platform: Machine-Assisted and Knowledge-Oriented Interactive Annotation](https://aclanthology.org/C18-2002/) (Klie et al., COLING 2018)
ACL