@inproceedings{ma-etal-2018-crst,
    title = "{CRST}: a Claim Retrieval System in {T}witter",
    author = "Ma, Wenjia  and
      Chao, WenHan  and
      Luo, Zhunchen  and
      Jiang, Xin",
    editor = "Zhao, Dongyan",
    booktitle = "Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations",
    month = aug,
    year = "2018",
    address = "Santa Fe, New Mexico",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/C18-2010/",
    pages = "43--47",
    abstract = "For controversial topics, collecting argumentation-containing tweets which tend to be more convincing will help researchers analyze public opinions. Meanwhile, claim is the heart of argumentation. Hence, we present the first real-time claim retrieval system CRST that retrieves tweets containing claims for a given topic from Twitter. We propose a claim-oriented ranking module which can be divided into the offline topic-independent learning to rank model and the online topic-dependent lexicon model. Our system outperforms previous claim retrieval system and argument mining system. Moreover, the claim-oriented ranking module can be easily adapted to new topics without any manual process or external information, guaranteeing the practicability of our system."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2018-crst">
    <titleInfo>
        <title>CRST: a Claim Retrieval System in Twitter</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Wenjia</namePart>
        <namePart type="family">Ma</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">WenHan</namePart>
        <namePart type="family">Chao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Zhunchen</namePart>
        <namePart type="family">Luo</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xin</namePart>
        <namePart type="family">Jiang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Dongyan</namePart>
            <namePart type="family">Zhao</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Santa Fe, New Mexico</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>For controversial topics, collecting argumentation-containing tweets which tend to be more convincing will help researchers analyze public opinions. Meanwhile, claim is the heart of argumentation. Hence, we present the first real-time claim retrieval system CRST that retrieves tweets containing claims for a given topic from Twitter. We propose a claim-oriented ranking module which can be divided into the offline topic-independent learning to rank model and the online topic-dependent lexicon model. Our system outperforms previous claim retrieval system and argument mining system. Moreover, the claim-oriented ranking module can be easily adapted to new topics without any manual process or external information, guaranteeing the practicability of our system.</abstract>
    <identifier type="citekey">ma-etal-2018-crst</identifier>
    <location>
        <url>https://aclanthology.org/C18-2010/</url>
    </location>
    <part>
        <date>2018-08</date>
        <extent unit="page">
            <start>43</start>
            <end>47</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CRST: a Claim Retrieval System in Twitter
%A Ma, Wenjia
%A Chao, WenHan
%A Luo, Zhunchen
%A Jiang, Xin
%Y Zhao, Dongyan
%S Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico
%F ma-etal-2018-crst
%X For controversial topics, collecting argumentation-containing tweets which tend to be more convincing will help researchers analyze public opinions. Meanwhile, claim is the heart of argumentation. Hence, we present the first real-time claim retrieval system CRST that retrieves tweets containing claims for a given topic from Twitter. We propose a claim-oriented ranking module which can be divided into the offline topic-independent learning to rank model and the online topic-dependent lexicon model. Our system outperforms previous claim retrieval system and argument mining system. Moreover, the claim-oriented ranking module can be easily adapted to new topics without any manual process or external information, guaranteeing the practicability of our system.
%U https://aclanthology.org/C18-2010/
%P 43-47
Markdown (Informal)
[CRST: a Claim Retrieval System in Twitter](https://aclanthology.org/C18-2010/) (Ma et al., COLING 2018)
ACL
- Wenjia Ma, WenHan Chao, Zhunchen Luo, and Xin Jiang. 2018. CRST: a Claim Retrieval System in Twitter. In Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, pages 43–47, Santa Fe, New Mexico. Association for Computational Linguistics.