@inproceedings{ma-etal-2018-crst,
title = "{CRST}: a Claim Retrieval System in {T}witter",
author = "Ma, Wenjia and
Chao, WenHan and
Luo, Zhunchen and
Jiang, Xin",
editor = "Zhao, Dongyan",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-2010/",
pages = "43--47",
abstract = "For controversial topics, collecting argumentation-containing tweets which tend to be more convincing will help researchers analyze public opinions. Meanwhile, claim is the heart of argumentation. Hence, we present the first real-time claim retrieval system CRST that retrieves tweets containing claims for a given topic from Twitter. We propose a claim-oriented ranking module which can be divided into the offline topic-independent learning to rank model and the online topic-dependent lexicon model. Our system outperforms previous claim retrieval system and argument mining system. Moreover, the claim-oriented ranking module can be easily adapted to new topics without any manual process or external information, guaranteeing the practicability of our system."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2018-crst">
<titleInfo>
<title>CRST: a Claim Retrieval System in Twitter</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenjia</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">WenHan</namePart>
<namePart type="family">Chao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhunchen</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongyan</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>For controversial topics, collecting argumentation-containing tweets which tend to be more convincing will help researchers analyze public opinions. Meanwhile, claim is the heart of argumentation. Hence, we present the first real-time claim retrieval system CRST that retrieves tweets containing claims for a given topic from Twitter. We propose a claim-oriented ranking module which can be divided into the offline topic-independent learning to rank model and the online topic-dependent lexicon model. Our system outperforms previous claim retrieval system and argument mining system. Moreover, the claim-oriented ranking module can be easily adapted to new topics without any manual process or external information, guaranteeing the practicability of our system.</abstract>
<identifier type="citekey">ma-etal-2018-crst</identifier>
<location>
<url>https://aclanthology.org/C18-2010/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>43</start>
<end>47</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CRST: a Claim Retrieval System in Twitter
%A Ma, Wenjia
%A Chao, WenHan
%A Luo, Zhunchen
%A Jiang, Xin
%Y Zhao, Dongyan
%S Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico
%F ma-etal-2018-crst
%X For controversial topics, collecting argumentation-containing tweets which tend to be more convincing will help researchers analyze public opinions. Meanwhile, claim is the heart of argumentation. Hence, we present the first real-time claim retrieval system CRST that retrieves tweets containing claims for a given topic from Twitter. We propose a claim-oriented ranking module which can be divided into the offline topic-independent learning to rank model and the online topic-dependent lexicon model. Our system outperforms previous claim retrieval system and argument mining system. Moreover, the claim-oriented ranking module can be easily adapted to new topics without any manual process or external information, guaranteeing the practicability of our system.
%U https://aclanthology.org/C18-2010/
%P 43-47
Markdown (Informal)
[CRST: a Claim Retrieval System in Twitter](https://aclanthology.org/C18-2010/) (Ma et al., COLING 2018)
ACL
- Wenjia Ma, WenHan Chao, Zhunchen Luo, and Xin Jiang. 2018. CRST: a Claim Retrieval System in Twitter. In Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, pages 43–47, Santa Fe, New Mexico. Association for Computational Linguistics.