@inproceedings{iwakura-etal-2018-detecting,
title = "Detecting Heavy Rain Disaster from Social and Physical Sensor",
author = "Iwakura, Tomoya and
Okajima, Seiji and
Igata, Nobuyuki and
Takeda, Kunihiro and
Yamakage, Yuzuru and
Morita, Naoshi",
editor = "Zhao, Dongyan",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-2014/",
pages = "63--67",
abstract = "We present our system that assists to detect heavy rain disaster, which is being used in real world in Japan. Our system selects tweets about heavy rain disaster with a document classifier. Then, the locations mentioned in the selected tweets are estimated by a location estimator. Finally, combined the selected tweets with amount of rainfall given by physical sensors and a statistical analysis, our system provides users with visualized results for detecting heavy rain disaster."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="iwakura-etal-2018-detecting">
<titleInfo>
<title>Detecting Heavy Rain Disaster from Social and Physical Sensor</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tomoya</namePart>
<namePart type="family">Iwakura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seiji</namePart>
<namePart type="family">Okajima</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nobuyuki</namePart>
<namePart type="family">Igata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kunihiro</namePart>
<namePart type="family">Takeda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuzuru</namePart>
<namePart type="family">Yamakage</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoshi</namePart>
<namePart type="family">Morita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongyan</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present our system that assists to detect heavy rain disaster, which is being used in real world in Japan. Our system selects tweets about heavy rain disaster with a document classifier. Then, the locations mentioned in the selected tweets are estimated by a location estimator. Finally, combined the selected tweets with amount of rainfall given by physical sensors and a statistical analysis, our system provides users with visualized results for detecting heavy rain disaster.</abstract>
<identifier type="citekey">iwakura-etal-2018-detecting</identifier>
<location>
<url>https://aclanthology.org/C18-2014/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>63</start>
<end>67</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Heavy Rain Disaster from Social and Physical Sensor
%A Iwakura, Tomoya
%A Okajima, Seiji
%A Igata, Nobuyuki
%A Takeda, Kunihiro
%A Yamakage, Yuzuru
%A Morita, Naoshi
%Y Zhao, Dongyan
%S Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico
%F iwakura-etal-2018-detecting
%X We present our system that assists to detect heavy rain disaster, which is being used in real world in Japan. Our system selects tweets about heavy rain disaster with a document classifier. Then, the locations mentioned in the selected tweets are estimated by a location estimator. Finally, combined the selected tweets with amount of rainfall given by physical sensors and a statistical analysis, our system provides users with visualized results for detecting heavy rain disaster.
%U https://aclanthology.org/C18-2014/
%P 63-67
Markdown (Informal)
[Detecting Heavy Rain Disaster from Social and Physical Sensor](https://aclanthology.org/C18-2014/) (Iwakura et al., COLING 2018)
ACL
- Tomoya Iwakura, Seiji Okajima, Nobuyuki Igata, Kunihiro Takeda, Yuzuru Yamakage, and Naoshi Morita. 2018. Detecting Heavy Rain Disaster from Social and Physical Sensor. In Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, pages 63–67, Santa Fe, New Mexico. Association for Computational Linguistics.