@inproceedings{chuan-an-etal-2018-unified,
title = "A Unified {R}v{NN} Framework for End-to-End {C}hinese Discourse Parsing",
author = "Chuan-An, Lin and
Huang, Hen-Hsen and
Chen, Zi-Yuan and
Chen, Hsin-Hsi",
editor = "Zhao, Dongyan",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-2016",
pages = "73--77",
abstract = "This paper demonstrates an end-to-end Chinese discourse parser. We propose a unified framework based on recursive neural network (RvNN) to jointly model the subtasks including elementary discourse unit (EDU) segmentation, tree structure construction, center labeling, and sense labeling. Experimental results show our parser achieves the state-of-the-art performance in the Chinese Discourse Treebank (CDTB) dataset. We release the source code with a pre-trained model for the NLP community. To the best of our knowledge, this is the first open source toolkit for Chinese discourse parsing. The standalone toolkit can be integrated into subsequent applications without the need of external resources such as syntactic parser.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chuan-an-etal-2018-unified">
<titleInfo>
<title>A Unified RvNN Framework for End-to-End Chinese Discourse Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lin</namePart>
<namePart type="family">Chuan-An</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hen-Hsen</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zi-Yuan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongyan</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper demonstrates an end-to-end Chinese discourse parser. We propose a unified framework based on recursive neural network (RvNN) to jointly model the subtasks including elementary discourse unit (EDU) segmentation, tree structure construction, center labeling, and sense labeling. Experimental results show our parser achieves the state-of-the-art performance in the Chinese Discourse Treebank (CDTB) dataset. We release the source code with a pre-trained model for the NLP community. To the best of our knowledge, this is the first open source toolkit for Chinese discourse parsing. The standalone toolkit can be integrated into subsequent applications without the need of external resources such as syntactic parser.</abstract>
<identifier type="citekey">chuan-an-etal-2018-unified</identifier>
<location>
<url>https://aclanthology.org/C18-2016</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>73</start>
<end>77</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Unified RvNN Framework for End-to-End Chinese Discourse Parsing
%A Chuan-An, Lin
%A Huang, Hen-Hsen
%A Chen, Zi-Yuan
%A Chen, Hsin-Hsi
%Y Zhao, Dongyan
%S Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico
%F chuan-an-etal-2018-unified
%X This paper demonstrates an end-to-end Chinese discourse parser. We propose a unified framework based on recursive neural network (RvNN) to jointly model the subtasks including elementary discourse unit (EDU) segmentation, tree structure construction, center labeling, and sense labeling. Experimental results show our parser achieves the state-of-the-art performance in the Chinese Discourse Treebank (CDTB) dataset. We release the source code with a pre-trained model for the NLP community. To the best of our knowledge, this is the first open source toolkit for Chinese discourse parsing. The standalone toolkit can be integrated into subsequent applications without the need of external resources such as syntactic parser.
%U https://aclanthology.org/C18-2016
%P 73-77
Markdown (Informal)
[A Unified RvNN Framework for End-to-End Chinese Discourse Parsing](https://aclanthology.org/C18-2016) (Chuan-An et al., COLING 2018)
ACL