@inproceedings{spala-etal-2018-web,
title = "A Web-based Framework for Collecting and Assessing Highlighted Sentences in a Document",
author = "Spala, Sasha and
Dernoncourt, Franck and
Chang, Walter and
Dockhorn, Carl",
editor = "Zhao, Dongyan",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-2017",
pages = "78--81",
abstract = "Automatically highlighting a text aims at identifying key portions that are the most important to a reader. In this paper, we present a web-based framework designed to efficiently and scalably crowdsource two independent but related tasks: collecting highlight annotations, and comparing the performance of automated highlighting systems. The first task is necessary to understand human preferences and train supervised automated highlighting systems. The second task yields a more accurate and fine-grained evaluation than existing automated performance metrics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="spala-etal-2018-web">
<titleInfo>
<title>A Web-based Framework for Collecting and Assessing Highlighted Sentences in a Document</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sasha</namePart>
<namePart type="family">Spala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franck</namePart>
<namePart type="family">Dernoncourt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Walter</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carl</namePart>
<namePart type="family">Dockhorn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongyan</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatically highlighting a text aims at identifying key portions that are the most important to a reader. In this paper, we present a web-based framework designed to efficiently and scalably crowdsource two independent but related tasks: collecting highlight annotations, and comparing the performance of automated highlighting systems. The first task is necessary to understand human preferences and train supervised automated highlighting systems. The second task yields a more accurate and fine-grained evaluation than existing automated performance metrics.</abstract>
<identifier type="citekey">spala-etal-2018-web</identifier>
<location>
<url>https://aclanthology.org/C18-2017</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>78</start>
<end>81</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Web-based Framework for Collecting and Assessing Highlighted Sentences in a Document
%A Spala, Sasha
%A Dernoncourt, Franck
%A Chang, Walter
%A Dockhorn, Carl
%Y Zhao, Dongyan
%S Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico
%F spala-etal-2018-web
%X Automatically highlighting a text aims at identifying key portions that are the most important to a reader. In this paper, we present a web-based framework designed to efficiently and scalably crowdsource two independent but related tasks: collecting highlight annotations, and comparing the performance of automated highlighting systems. The first task is necessary to understand human preferences and train supervised automated highlighting systems. The second task yields a more accurate and fine-grained evaluation than existing automated performance metrics.
%U https://aclanthology.org/C18-2017
%P 78-81
Markdown (Informal)
[A Web-based Framework for Collecting and Assessing Highlighted Sentences in a Document](https://aclanthology.org/C18-2017) (Spala et al., COLING 2018)
ACL