@inproceedings{lo-etal-2018-cool,
title = "Cool {E}nglish: a Grammatical Error Correction System Based on Large Learner Corpora",
author = "Lo, Yu-Chun and
Chen, Jhih-Jie and
Yang, Chingyu and
Chang, Jason",
editor = "Zhao, Dongyan",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-2018",
pages = "82--85",
abstract = "This paper presents a grammatical error correction (GEC) system that provides corrective feedback for essays. We apply the sequence-to-sequence model, which is frequently used in machine translation and text summarization, to this GEC task. The model is trained by EF-Cambridge Open Language Database (EFCAMDAT), a large learner corpus annotated with grammatical errors and corrections. Evaluation shows that our system achieves competitive performance on a number of publicly available testsets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lo-etal-2018-cool">
<titleInfo>
<title>Cool English: a Grammatical Error Correction System Based on Large Learner Corpora</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yu-Chun</namePart>
<namePart type="family">Lo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jhih-Jie</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chingyu</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongyan</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a grammatical error correction (GEC) system that provides corrective feedback for essays. We apply the sequence-to-sequence model, which is frequently used in machine translation and text summarization, to this GEC task. The model is trained by EF-Cambridge Open Language Database (EFCAMDAT), a large learner corpus annotated with grammatical errors and corrections. Evaluation shows that our system achieves competitive performance on a number of publicly available testsets.</abstract>
<identifier type="citekey">lo-etal-2018-cool</identifier>
<location>
<url>https://aclanthology.org/C18-2018</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>82</start>
<end>85</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cool English: a Grammatical Error Correction System Based on Large Learner Corpora
%A Lo, Yu-Chun
%A Chen, Jhih-Jie
%A Yang, Chingyu
%A Chang, Jason
%Y Zhao, Dongyan
%S Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico
%F lo-etal-2018-cool
%X This paper presents a grammatical error correction (GEC) system that provides corrective feedback for essays. We apply the sequence-to-sequence model, which is frequently used in machine translation and text summarization, to this GEC task. The model is trained by EF-Cambridge Open Language Database (EFCAMDAT), a large learner corpus annotated with grammatical errors and corrections. Evaluation shows that our system achieves competitive performance on a number of publicly available testsets.
%U https://aclanthology.org/C18-2018
%P 82-85
Markdown (Informal)
[Cool English: a Grammatical Error Correction System Based on Large Learner Corpora](https://aclanthology.org/C18-2018) (Lo et al., COLING 2018)
ACL