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ABSTRACT 

Many investisators have recognized that so- 
phisticated mechanical translation or other computational 
linguistic systems will require language learning capa- 
bilities, both in the ability to discover and verify new 
descriptive rules, and to adapt rules to new situations 
of use. 

The work plan of a long-range series of ex- 
periments in automatic linguistic classification is de- 
scribed, together with a discussion of the first experi- 
ment now in progress. The latter is concerned with category 
identification. In particular the data resulting from 
automatic syntactic analysis of English texts will be 
used to identify syntactic categories which have similar 
membership. 

The series of experiments will accordingly combine 
the use of automatic linguistic analysis and automatic 
classification techniques. Automatic syntactic analysis, 
and in later experiments semantic analysis, will be performed 
within the Linguistics Research System (LRS). Automatic 
classification will be carried out within the Automatic 
Classification System (ACS). Both of these computer systems 
have been developed by the Linguistics Research Center. 

LRS is a large-capacity system designed especially 
to support research in computational linguistics, It 
currently has the capability of performing several types 
of generalized translation, and of transferring information 
among any number of languages through the use of interlingual 
descriptions. This system operates under its own monitor. 

ACS is a Fortran IV system operating under the 
IBSYS monitor. It performs a variety of classification 
operations on large universes of objects having specified 
properties. Either objects or properties may be classified, 
and correlations may be computed among resulting classes 

A programming interface is being constructed between 
these two systems so that their combined capabilities can be 
used for automatic linguistic classification. 
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INTRODUCTION 

Mechanical translation research over almost 

two decades has led to a broader discipline, computational 

linguistics, which already includes within its concern the 

automated processes that collect, store, retrieve or 

communicate information conveyed in or about language, 

as well as translate one language into another. Uith 

progress in automatic classification, another possibility 

is being explored, that of creating new information rather 

than merely gathering, maintaining or distributing the 

results of human intellectual activities. 

Many investigators have noted that sophisticated 

linguistic systems must be capable of learning. A new 

term may be defined within a text being translated me- 

chanically. Or, more commonly, a new meaning may be given 

a term used in close communication among colleagues. 

Bar-Hillel, for one, has waxed and waned in enthusiasm 

for mechanized linguistic learning, finally relegating 

even its investigators to the "lunatic fringe" of 

computational linguistics. Some thoughtful work has 

been done by Lamb [i] . Certainly Solomonoff [2] should 

be mentioned, as should Knowlton [3] and Sparck-Jones [4], 

but each for a different reason. There is hardly a 

literature to cite, unless it be that unruly assemblage we 

have come to call "artificial intelligence." 

The name "self-organizing system" has also come 

into use. We will adopt it, so that "learning" and 

"adapting" may distinguish different kinds of self-organization. 

We observe, furthermore, that to process information 

one must first process the language (or symbolic system) 



Pendergraft ,  Dale I-~ 

in which the information is given. As a consequence, 

every information processing system has a component 

that processes linguistic information. And that 

component, we now know, may have a subcomponent which 

processes meta-linguistic information. 

Self-organizing linguistic systems properly 

fall within the scope of meta-linguistic processing. 

The information being processed is about some language, 

the "object-language" of the communication; hence the 

vehicle by which the information is conveyed is a 

"meta-language." If the self-organizing system has 

changed the description of the conventional alternatives 

available within the object-language, then we will say 

that the system is "learning." Whether or not the 

alternatives remain unchanged, if some alteration has 

been made in the conventions of their use, the system 

will be "adapting." 

Thus, roughly speaking, learning will involve 

some change in linguistic rules that describe a set of 

well-defined alternatives in the object-language. 

Adaptation will involve some change in a set of probabilities 

that describe how those alternatives are being used. 

A self-organizing information system, in contrast 

to one learning or adapting by meta-linguistic processing, 

would employ linguistic processing to create new information 

about some subject-matter not necessarily linguistic. But 

since the information so processed might indeed be about 

language, we anticipate that linguistic self-organization 

may be based either meta-linguistically or linguistically. 

For the present, however, our system will be based 

on meta-linguistic processing. Work in meta-syntactics 
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is progressing rapidly; researchers in computational 

linguistics now face the obligation of testing hypo- 

theses more rigorously than with heuristic arguments 

or typical linguistic examples. More careful investi- 

gation is need in meta-semantics, i.e. in the relations 

between meta-linguistic and linguistic information. 

In essence, then, we will try with automatic 

linguistic classification to bridge the gap between the 

design of language and the events of spoken or written 

discourse. What we have to report is only a small 

beginning toward that objective. 

We recognize that these are difficult problems 

requiring long-range commitments. They are nevertheless 

central to improving the language data used in automated 

analysis, synthesis and translation. Moreover, they lead 

to the concept of a dynamic language data base in lin- 

guistic processing. 

Already it is clear that the amount of 

information contained in a language description greatly 

influences efficiency in linguistic processing. Contrary 

to our former intuition, a simple description may merely 

be deficient in information so that the search in automated 

analysis will be extended unduly. There appears, furthermore, 

to be an optimal size in the syntactical descriptive unit. 

Thus, in making the transition from syntactical to semantical 

description (at least for the theories [5] we are studying), 

the basic question is analogous to that in the transition 

from lexical to syntactical description which gives rise to 

morphology: viz. what objects are to be classified? We 

are attacking these semological and morphological problems 
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within the same theoretical structure that determines how 

the resulting objects a r e  to be  classified. Indeed, the 

two questions appear inseparable. 
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BASIC PROGRAHS 

The Automatic Classification System (ACS), a 

Fortran IV programming package (7) based on the classifi- 

cation theories of Needham and Parker-Rhodes (8) has been 

developed by the Linguistics Research Center of The 

University of Texas (under support of the National Science 

Foundation and the U. S. Army Electronics Laboratories), 

and has been made generally available for classification 

research. The version of the system used in our own 

facility has been augmented with list-processing routines 

and other specialized programming which greatly increased 

its efficiency and data-capacity. 

ACS is a generalized classification system which 

can be applied to non-linguistic as well as linguistic 

problems. Its basic inputs are data describing the inci- 

dence (or the frequency of incidence) of particular properties 

upon particular objects. These incidence data may be trans- 

posed, so that either the properties or the objects can be 

classified. Various measures of the similarity between pairs 

of the objects (or properties) are available, permitting the 

incidence data to be used in computations of the connections 

between object (or property) pairs. Using these connection 

data, other routines group together "clumps" of objects with 

similar properties (or of properties occurring similarly in 

the objects). Various kinds of the clumps can be discovered. 

ACS has a section which controls the selection of similarity 

measures and clumping methods in classification experiments (6). 

To formalize the concepts of distributional classi- 

fication, e.g. those investigated by Hockett (8) and by Harris 

(9) we have extended the general classification theory to binary 

as well as singulary relations. In linguistic classification 

these can be interpreted as constitutive relations (e.g. 
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concatenation). This interpretation, more exactly, assumes that 

the incidence data describe pairs of objects standing in that 

particular relation. Clumps of similar objects are then found 

in both the domain and counterdomain of the relation. Finally, 

individual clumps in the domain are paired with individual 

clumps in the counterdomain according as the connections between 

members of the two clumps are dense (in a precise sense) rela- 

tive to the entire set of connections. Pairs of clumps may also 

be found by using a measure of relative sparseness in the connec- 

tions. These capabilities have been added to ACS, and programming 

is being done to prepare incidence data mechanically from the 

results of automatic analysis in LRS (i0). 

The automatic analysis algorithms in LRS are linguisti- 

cally generalized, i.e. they will recognize the expressions of 

any object-language according to the exact specifications described 

in particular meta-languages. These language data, furthermore, 

are operationally generalized; they will be given relationally 

(solely in terms of relations and not as a process) so that syn- 

thesis as well as analysis algorithms may refer to the same 

descriptions. Object-language descriptions are conveyed by a 

hierarchy o£ meta-languages rather than by a single meta-language 

(5). The complete data hierarchy will be given by lexical, syn- 

tactical, semantical and pragmatical meta-languages; the first 

three are currently available in LRS. Lexical, syntactic, semantic 

and pragmatic analysis (or synthesis) algorithms will be oriented 

to the corresponding levels of monolingual data. Analysis will 

affect a transfer to the next higher level of processing; syn- 

thesis to the next lower level. Automated lexical and syntactic 

analysis (as well as synthesis and translation) are operational 

in LRS, and the semantic algorithms will be later this year. All 

of the algorithms are parallel, stochastic, heuristic and machine- 

independent; that is to say, they have the following design fea- 

tures which we believe to be important in automatic linguistic 

classification experiments: 



P c n d e r g r a f t ,  Dale 2-3 

(a) They carry forward a search for all possible lin- 

guistic alternatives in parallel, instead of following to 

completion one sequence of alternatives before beginning an- 

other. As a result, all of the available linguistic evidence 

is represented in the analysis output. 

(b) They compute a p r o b a b i l i t y  f o r  each l i n g u i s t i c  

a l t e r n a t i v e  b e i n g  p r o c e s s e d .  The p r o b a b i l i t y  w i l l  be the  

same in  a n a l y s i s  or  s y n t h e s i s ;  i t  r e p r e s e n t s  the l i k e l i h o o d  

of  o c c u r r e n c e  in  t i le l a n g u a g e  r a t h e r  t han  in  the  p r o c e s s .  

(c) They {may or may n o t ,  as a m a t t e r  of  c h o i c e )  use 

the  p r o b a b i l i t i e s  as h e u r i s t i c  c r i t e r i a  to l i m i t  the  a n a l y s i s  

output to the most likely alternatives. 

(d) They a re  o r i e n t e d  e n t i r e l y  to p a r t i c u l a r  meta-  

syntactical and meta-semantical relations, not to the com- 

ponents of a particular computer. All processing decisions 

and results will be the same on every computer large enough 

to do the linguistic processing. 
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MORPHOLOGICAL CLASSIFICATION 

Constitutive relations may, of course, be used 

as the basis of classification of individual objects 

(i.e. for singulary as opposed to binary classification). 

A formal distinction can also be made between the classes 

of objects which are identical and those which are to some 

degree equivalent in distribution. The former, to be speci- 

fic, have identical clump membership and are thus indistin- 

guishable with respect to the particular constitutive rela- 

tion described in the incidence data. The latter have common 

membership in a particular set of clumps and, as a consequence, 

share certain distributional properties which are represented 

by those clumps. 

Morphological classification, therefore, will 

involve the following basic operations within our theories. 

(These will also be pertinent to our remarks below about 

semological classification.) For the given constitutive 

relation, the classification algorithm will have to: 

(a) Recognize, among the objects potentially made 

available by segmentation, those which are to be classified. 

(b) Perform singulary classification of the recognized 

objects to determine which subsets of them have identical 

distribution relative to that constitutive relation. 

We assume, in the morphological problem, that the 

objects to be classified are lexical units (whether phonetic 

or orthographic) and that concatenation is the constitutive 

relation. Our working hypothesis is that the morphological 

objects are those which maximize the connection entropy. 

This seems intuitively reasonable, since more or less homo- 

geneous connections would be anticipated among objects 
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having  e l e m e n t a r y  s t a t u s .  C o n v e r s e l y ,  a r e l a t i v e l y  s t r o n g  

c o n n e c t i o n  between two o b j e c t s  would be ev idence  t h a t  they  

were p a r t s  of a s i n g l e  c o n s t r u c t .  

Accordingly, a routine has been added to ACS to 

normalize the connection data and,nfOr the normalized con- 

nections PI' P2' "''' P2 (i • Pi; r Pi = i), to compute 
- i= 1 the connection entropy 

n 
H(PI '  P2'  " ' ' '  Pn ) = -r  pj log pj 

j = l  

fo r  a conven ien t  l o g a r i t h m i c  base [11] .  The second o p e r a t i o n ,  

t h a t  of  d e t e r m i n i n g  what o b j e c t s  have i d e n t i c a l  d i s t r i b u t i o n a l  

p r o p e r t i e s ,  w i l l  be handled  by a r o u t i n e  which f i n d s  the  s e t s  

in the i n t e r s e c t i o n s  d e f i n e d  by the  c o l l e c t i o n  of a l l  clumps. 

(We will say that the members of the identit Z classes form 

"component sets" of the universe of objects being classified, 

because the sets partition that universe.) 

Some of the strategies which may be used in mor- 

phological classification have been compared by Hockett [12] 

who concluded that different classification methods could 

succeed in establishing the same relation between morphemes 

and phonemes. A strategy chosen for automation must, above 

all, be computationally tractable. The two methods which 

Hockett calls the "morph approach" and the "morphophonemic 

approach" would have inherent advantages or disadvantages 

computationally. 

The "morph approach," according to Hockett, sup= 

poses that morphemes are represented by morphs and that morphs 

are composed by phonemes. In consequence, the constitutive 
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relation (concatenation) must obtain between constructions 

of phonemes. By our hypothesis, a set of morphs would be 

any set of the constructions maximizing (perhaps locally) 

the connection entropy. And members of each identity class 

of the morphs would be the allomorphs of a particular morpheme. 

Computationally, then, we might carry out the fol- 

lowing morphological classification algorithm: 

(a) Perform lexical analysis, using the current set of 

phoneme constructs as the lexical data (lexicon). 

(b) Prepare incidence data describing the constitutive 

relation between the contructs. 

(c) Compute the connections between pairs of the con- 

structs and the connection entropy, comparing the result with 

the entropy of the preceding cycle. 

(d) I f  the  e n t r o p y  has i n c r e a s e d ,  combine the (one or 

more, depending upon the r a t e  of  i n c r e a s e )  s t r o n g l y  connec ted  

p a i r s  i n t o  s i n g l e  c o n s t r u c t s ;  r e t u r n  to (a ) .  

(e) If the entropy has not increased, perform singulary 

classification and find the component sets of morphs which 

will represent morphemes. 

l l o c k e t t ' s  "morphophonemic a p p r o a c h , "  in c o n t r a s t ,  

would t ake  morphemes to be composed of morphophonemes and 

morphophonemes to be r e p r e s e n t e d  by phonemes. One i n t e r p r e -  

t a t i o n  of  t h e s e  r e l a t i o n s  in terms of the c l a s s i f i c a t i o n  

t h e o r i e s  (among s e v e r a l )  would invo lve  the  s u p p o s i t i o n  t h a t  

the members of  each i d e n t i t y  c l a s s  of the phonemes r e p r e s e n t  
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a p a r t i c u l a r  morphophoneme. C o n s e q u e n t l y ,  any phoneme r e -  

p r e s e n t i n g  the  morphophoneme M would be d i s t i n g u i s h e d  in the  

i n c i d e n c e  d a t a  on ly  as an M. A phoneme c o n s t r u c t ,  s i m i l a r l y ,  

would be d i s t i n g u i s h e d  on ly  as the  c o n s t r u c t  of  r e p r e s e n t e d  

morphophonemes. Any s e t  of the  morphophoneme c o n s t r u c t s  max- 

imiz ing  (maybe l o c a l l y )  the  c o n n e c t i o n  e n t r o p y  would be r e -  

cognized  as morphemes. 

That these relations would call for a different 

computational strategy should be evident. Because of the 

higher level of abstraction, one might anticipate that (a) 

there would be fewer morphophoneme than phoneme constructs, 

and (b) the latter would occur more frequently than the 

former in the outputs of lexical analysis. But our aim is 

not to prejudge the computational advantages of one approach 

above another; the schemes which are feasible within our 

analysis and classification capabilities will be tested. 
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SYNTACTICAL CLASSIFICATION 

The advantages of abstraction in classification are 

nevertheless striking in syntactical applications. Indeed the 

possible gains seem so promising that we have bypassed automated 

morphological classification in our first experiments to investi- 

gate the following operations of syntactical classification. Each 

operation presupposes not only the existence of a set of morphemes, 

but an assignment of the morphemes to syntactical equivalence 

classes relative to concatenation, as already described. 

(i) Identification of classes. If, in the outputs of syn- 

tactical analysis, it is found that some expression has been 

(ambiguously) recognized both as an A and as a B, then this coin- 

cidence of A and B will be the event counted. Singulary classi- 

fication will then be performed to determine whether an A and a 

B are distinguishable distributionally relative to coincidence. 

If not, we will induce that the predicates "A" and "B" are co- 

extensive, i.e. they denote the same objects [13]. The two pre- 

dicates will therefore be replaced (wherever they occur in the 

syntactical description) by a single predicate. 

(2) Generalization of classes. During the class identifi- 

cation operation (i), the event of being an A will be assigned to 

a set of (zero or more) clumps. If being an A entails being in 

the clump C, then we introduce the new predicate "C". We induce, 

further, that the predicate "C" comprehends the predicate "A", 

i.e. "C" denotes every object that "A" does [13]. And, since the 

extensions of the new predicates are clumps of objects sharing 

some distributional property, we characterize "A" and "C" as 

ostensive and distributional predicates, respectively, relative 

to the constitutive relation. 

Taking a new incidence data to describe the relation 

of comprehension between the distributional and ostensive ,red- 
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icates, we will next perform singulary classification to 

bring together predicates which are similar relative to 

comprehension. Thus) we induce that the predicates have 

similar extensions. The ostensive predicates in each clump 

will be replaced (in all their occurrences in the syntactical 

description) by the distributional predicate of that clump, 

i.e. by the predicate whose extension is the union of the 

extensions of the extensionally-similar predicates. (K- 

clumping is convenient for generalizing classes because it 

provides a parameter for the degree of generalization.) 

(3) Rul_.__~e generation. The aim of this operation will 

be to find new syntactic rules (i.e. taxonomic axioms) to 

be added to the syntactical description. The events to be 

counted in preparing the incidence data will be those in 

which an A is found to be concatenated to a B in the outputs 

of automated syntactic analysis. Binary classification will 

be used to pair clumps on the basis of dense connections, as 

explained above. For any resulting pair of densely connected 

clumps C) D classifying an A as a C) and a B as a D) respec- 

tively) we generate the syntactic rules A ~ C, B = D and 

C D ~ E. The predicate "C D" will have as its extension any 

C concatenated to any D. "E" will be a new predicate compre- 

hending "C'~D. '' 

Rules generated inductively will tend to be overly 

general. There will be an operation) however) by which syn- 

tactical classes can be specialized to conform to the empirical 

analysis data. 

(4) Specialization of classes. From the rules A ~ C 

and C D ~ E we may infer the derived rule A D ~ E. Hence the 

application of A c C to C~D ~ E at the first (left-most) place 
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in the  l a t t e r  may be s y m b o l i z e d  a l g e b r a i c a l l y  [14] as f o l l o w s :  

f-a "/'7~ ,.-~ 
(c D F) (A CO) = (A D c..E) 

Incidence data, prepared for one particular class Cp will de- 

scribe tile frequency of application of rules at places mention- 

iag that class. The events counted, specifically, will be those 

in which a rule X is found (in the analysis outputs) to be applied 

at a place p in rule Y (i.e. for the event "~xfPaY, the pair of ob- 

jects YP~x will be regarded as standing in the constitutive rela- 

tion). Different places in the same rule will be treated as dif- 

ferent objects relative to application. Binary classification 

will be used to pair densely-connected clumps of distributionally 

similar (in the domain) places of application~ and (in the coun- 

terdomain) rules being applied to the places. The predicate "C" 

will be replaced (in those particular occurrences in the syntac- 

tical description) by a new predicate denoting that subclass of C. 

These syntactic classification operations will be opera= 

tional in the combined LRS-ACS programming system before the end 

of this year. We plan an extension of the system to include auto- 

mated morphological, semological and semantical classification. 

The last will be restricted to a distributional semantics without 

identification of references, i.e. to the restricted form of our 

theoretical hypothesis [5] which assumes that applications at 

different places in the same rule are independent events. 
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SEMOLOGICAL CLASSIFICATION 

Recently we observed [iS] that a small informational 

unit in language data seems convenient for the descriptive 

linguist, but a large informational unit would optimize lin- 

guistic processing. In retrospect it appears likely that, in 

our project and elsewhere, different approaches to syntactical 

description have too often been concerned with different infor- 

mational units rather than different information. As antici- 

pated above, we have come to questions in syntactical classi- 

fication which are analogous to those in lexical classifica- 

tion which gave rise to morphology; viz. what objects are to 

be classified semantically? 

Joos [16] has stimulated our thinking about semology, 

as has La~nb [12]. Undoubtedly the latter's own interest in 

automated syntactical classification [i] has contributed to 

the similarity of our theories; the study of automatic lin- 

guistic classification brings one to consider informational 

units which are small enough to be discovered mechanically. 

Adopting Bloomfield's terminology [18], we will 

refer to the elemental units of syntactical description (i.e. 

those rules conveying minimal units of information) as tasmemes. 

The elementary units to be classified semantically will be 

semes. Between the two, we will posit semological relations 

analogous to those which Hockett presented for morphology. 

(i) The first hypothesis would be that sememes are 

represented by semes, and that semes are composed of tagmemes. 

Within the frame of our classification theories, therefore, 

the constitutive relation would be application: the semes 

would be regarded as the representatives of a particular 

sememe. This is the approach we will take in our first 

semological experiments. 
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(2) Semes would be composed of semotagmemes, in tile 

second hypothesis, and semotagmemes represented by tagmemes. 

Consequently, for the purposes of automated classification, 

the members of an identity class relative to application 

would be regarded as the representatives of a particular 

semotagmeme. A set of semotagmeme constructs (locally) 

maximizing the connection entropy would be recognized as 

semes. This approach to automated semological classifica- 

tion may have the advantage of a higher level of abstraction, 

like the analogous morphophoneme approach in morphological 

classification. 

Both semological hypotheses will be tested when we 

have the additional data-capacity which a magnetic disk will 

provide in ACS early next year. LRS programs that maintain 

either type of semological data are already operational. 
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6 SEMANTICAL CLASSIFICATION 

Sememes, in the sense which may be formalized as 

suggested above, are regarded in our working hypothesis as 

describing signs in the object-language. To be specific 

they will have two epistemological functions: 

(a) They w i l l  convey the  ( f o r m a t i o n a l )  s y n t a x  of  the 

o b j e c t - l a n g u a g e ,  i . e .  the i n f o r m a t i o n  needed to c o n s t r u c t  

complex s i g n s  from the b a s i c  ones .  

(b) They will be units substituted in translation, 

paraphrasing and other transformations based on semantical 

criteria. 

A fundamental principle leading to distributional 

semantics was cited by Martin [15] in 1958. In discussing 

"translational" and "non-translational" semantical meta- 

languages, he presents a thesis which we will paraphrase 

very roughly for our present purpose: 

Semantical relations (e.g. denotation, designation), 

in requiring as their arguments both signs and their objects 

(denotata, designata), make it necessary that the semantical 

meta-language itself have signs for the same objects as the 

object-language. The meta-language signs are, accordingly, 

translations of the object-language signs, since the two sets 

have common objects. As a consequence of this, semantical 

relations in the meta-language will be at least as complex 

as those in the object-language. However a "non-translational" 

semantical meta-language may describe a relation between signs, 

but one defined in semantical terms (e.g. comprehension, where 

one sign will comprehend another if the former denotes every 
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ob jec t  the l a t t e r  does) .  This second type of meta- language 

will be semantically less complex than the object-language. 

Furthermore, as we have suggested above, it is 

probable that comprehension of signs may be induced from 

distributional evidence. A distributional semantics, in 

addition to being a non-translational in Martin's sense, 

would define comp[ehension or some alternative relation be- 

tween signs in purely distributional terms) leaving aside all 

theoretical references to objects which the signs may or may 

not have. This is the approach we ]lave taken) by employing 

the concepts of classification theory to formalize those of 

distribution. 

With few exceptions the computational strategies 

in semantical classification will be the same as in the 

distributional syntactics. Analogous operations of class 

identification, generalization and specialization will be 

available. But the members of syntactical classes will be 

syntactic rules. And the rules in a given class will be 

required to have the same "degree," i.e. the same number 

of those predicates with the equivalence (but not the 

identity) classes as their extensions [5]. 

Generation of semantic rules will likewise be 

analogous to the syntactical operation. But our semantical 

hypothesis requires that all of the syntactic rules in the 

extensions of two semantical classes be applied (pairwise) 

at~laces of application with the same name. For instance 

A B would describe the applications of the rules in seman- 

tical class B to those in the class A at the places named by 

the numeral 2. When the syntactic rules are first generated, 
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their places of application will be named positionally (from 

left to right) and, in the restricted theory, uniquely (no 

two places will have the same name). Binary semantical classi- 

fication, as part of the rule generation operation, will show 

how the places should be renamed to satisfy the above semanti- 

cal convention. (In LRS this is the information conveyed by 

"superscripts" associated with the appropriate predicates in 

syntactic rules.) Otherwise the generated semantic rules will 

be formally the same as the syntactic (e.g. A = C, B c D, 

C~D c E). The numeral naming the place of application of 

two semantical classes is given in our notations as part of 

the connective symbolizing application. Conventions for re- 

naming the places during deductive inference ]lave been reported 

elsewhere [19]. 



Pendergraft, Dale 7-1 

SELF-ORGANIZING LINGUISTIC SYSTE~4S 

Automatic linguistic classification will give us 

various capabilities for changing language descriptions. 

l%e plan to study each capability separately so that it will 

receive its own development. Coordination of the capabil- 

ities into an integrated system will be approached as a 

different problem, that of self-organization. The system 

as a whole must not only change, but change for the better. 

I Iomeos ta s i s ,  as e x p l a i n e d  by Ashby [20"], i s  the  

fundamenta l  c o n t r o l  p r i n c i p l e  we w i l l  i n v e s t i g a t e .  Roughly 

s p e a k i n g ,  i t  c a l l s  f o r  r e o r g a n i z a t i o n  when the s i t u a t i o n  

( acco rd ing  to some c r i t e r i o n )  i s  g e t t i n g  worse and s t a b i l i t y  

when i t  i s  g e t t i n g  b e t t e r .  Hence the  a l g o r i t h m s  we d e s c r i b e d  

fo r  m o r p h o l o g i c a l  (or  s e m o l o g i c a l )  c l a s s i f i c a t i o n  were too 

s imple .  I f  a d e c r e a s e  in c o n n e c t i o n  e n t r o p y  d e f i n e s  " g e t t i n g  

worse" in m o r p h o l o g i c a l  (or  s e m o l o g i c a l )  c l a s s i f i c a t i o n ,  the  

system must be ab le  to d e l i v e r  s m a l l e r  as wel l  as l a r g e r  con- 

s t r u c t s  d u r i n g  i t s  r e o r g a n i z a t i o n .  In s y n t a c t i c a l  (or  seman- 

t i c a l )  c l a s s i f i c a t i o n ,  s t a b i l i t y  or r e o r g a n i z a t i o n  ( in response  

to d e c r e a s i n g  or i n c r e a s i n g  e n t r o p y ,  r e s p e c t i v e l y )  may be ob- 

t a i n e d  by a choice between the class identification and general- 

ization operations. With K-clumping, class generalization may 

also be parameterized to specify a greater or lesser reorgani- 

zation in descriptive categories. 

These basic control techniques will be tried toward 

the end Of this year. To control class specialization and 

rule generation, we will use the following processing sequence 

after each cycle of syntactic (or semantic) analysis. 
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(a) Compute the connections and connection entropy 

for each  class. 

(h) Sort the classes so that those with the lowest 

entropy come first. 

(c) Perform the class specialization operation on the 

successive classes until one is reached which cannot be spe- 

cialized. 

(d) Use only that class and the ones following it for 

rule generation. 

Underlying this processing strategy is t h e  assump- 

tion that stable classes will be characterized by high con- 

nection entropy. (Though plausible, this must be tested.) 

Rule generation will thus be limited, as a result of the 

strategy, to those classes which are found to be the most 

stable. Broadly effective control strategies are our pres- 

ent concern; we believe it will be possible to supplement 

these with more selective controls later on. 

Incidence data for our first automatic linguistic 

classification experiments }lave been prepared mechanically 

from statistics brought directly to ACS from the analysis 

outputs in LRS. For the self-organizing linguistic system 

we felt that the statistics should he accumulated from anal- 

ysis statistics from LRS to the Information ?laintenance Sys- 

tem (IHS), a coordinate information storage and retrieval 

system [21] which we have programmed fol the Aeronautical 

Systems Division, Air Force Systems Command. This system 

has been released by its sponsor for use in linguistic 

research. Classification statistics from ACS will also be 
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stored in IMS. A report generator will be added to I~S so 

that the analysis and classification statistics can be dis- 

played in formats suitable for publication. 

Programming to implement the Self-organizing Lin- 

guistic System (SLS) will include the following routines: 

7.1 LRS-IMS Interface 

Transportation of the analysis statistics on coin- 

cidence, concatenation and application at the different lin- 

guistic levels will be performed by these programs. In addi- 

tion to collecting and organizing the statistics, they will 

update the stores in I~|S, also handling the additions and 

deletions of rules or classes. Normalizing factors will be 

maintained cumulatively so that statistics collected during 

different periods of time may be compared. These programs 

are now almost completed. 

7.2 I~!S-ACS Interface 

This set of programs will carry out tile control 

strategies we have mentioned. They are being written under 

IBSYS so that they will be compatible with ACS Programming. 

The 151S store has been designed so that it can be manipulated 

under either the LRS operating system or IBSYS. It is antic- 

i~ated that most of these routines will be in operation be- 

fore the end of 1965. 

7.3 ACS=IMS Interface 

Classification results will be collected, organized 

and transported to IMS by these routines. They will also up- 

date the I~4S store. Their completion will coincide with rou- 

tines in the IMS-ACS interface. 
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7.4 IMS-LRS Interface 

The same r e q u e s t  f o r m a t s  which the  l i n g u i s t  uses  

in  a d d i n g ,  c h a n g i n g  or d e l e t i n g  l a n g u a g e  d a t a  in  LRS w i l l  

be used by the  s e l f - o r g a n i z i n g  s y s t e m ,  l lowever ,  l anguage  

d a t a  p r o c e s s i n g  in  LRS may be p e r f o r m e d  e i t h e r  w i t h  mnemonic 

symbols  or  n u m e r a l s  as the  names of  s y n t a c t i c a l  (or  s e m a n t i c a l )  

c l a s s e s .  The au toma ted  s y s t e m  w i l l  use the  n u m e r a l s ,  r e f e r -  

e n c i n g  i t s  r e q u e s t s  to the  r e s u l t s  of  a u t o m a t i c  c l a s s i f i c a t i o n .  

Because the self-organizing system will be able to 

make extensive changes in the data base, which would be pro- 

hibitive by manual coding, we plan to provide macro-requests 

(e.g. a request to eliminate the distinction between the pred- 

icates grouped together by the generalization operation). 
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AN EXPERIMENT 

This experiment in class identification will 

exemplify the type of research we are performing. 

Although the operations performed are those described 

above as class generalization, by setting the K-clumping 

parameter to 1 we obtain component sets as the classifi- 

cation output. 

8.1 Experimental Design 

General Definitions 

Given a binary matrix: 

l(i,j): 

l(i): 

l(j): 

the number of l's in the intersection 
of columns i and j. 

the number of l's in column i. 

t h e  number  o f  l ' s  in  column j .  

Phase I: 

Part I: 

Forming Connection Matrix 

Co,struct Incidence Array A 

A = (ai,j) 

ai, j - 1 

such  t h a t  

. t h  the ~ object is 

described by the i th 

property. 

a i)j = 0 0 otherwise 
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Part 2: Compute Frequency Matrix from A 

Part 3: 

Y = (fi,j) such  t h a t  

fi,j = l(i,j) i# j 

fi,i = l(i) 

fj,j = l(j) 

Reduce Dimensions of F 

Remove rows and columns of P as follows~ 

Part 4: 
i 

row (column) i is deleted 

(~> fi,j = 0 for all j, j~i 

Normalize columns of F 

N = ( n i ,  j )  such  t h a t  

(Ni) j = fi,j/fj,j 

Part 5 : Compute C o n n e c t i o n  ), . latrix C 

C = ( c i ~  j )  such  t h a t  

rain k ) where  m i s  t h e  number  
(ni k'n~'~ of columns (rows) in t h e  Ci,j k=l 

normalized reduced matrix 
F. 

Discussion: The frequency matrix which forms the incidence 

data for the experiment is a table showing how many times an 

object i coincides with an object j. Reducing the matrix 

by removing columns which are all zero on all off-diagonal 

cells, deletes from the set of objects those objects for 
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which there are no coincidence data. Normalizing the 

columns of F by the diagonal--which contains the number 

of instances of the object in the sample--produces the 

normalized incidence matrix. 

Connection matrix C is a symmetric matrix which 

describes the relation of object i to object j based on 

the normalized incidence data. Matrix C constitutes the 

data for the next stage of processing• 

Phase 2: L o c a t i n g  GR-Clumps 

Definitions 

C: Connection Hatrix computed in Phase i. 

U: Universe set (set of objects characterized in 

connection matrix C.) 

A: A subset of U. 

~: U-A=~, complement of A. 

x: An element of U. 

An element of A (al,a2, ai: 

~i: An element of ~ (KI,~2) 

(Note: r+t=m) 

• . a  t )  

• . F  r)  

c ( a i ) a j ) :  c i c o n n e c t i o n  o f  o b j e c t  i to  o b j e c t  j as d e f i n e d  ,J 
in  t he  i j t h  c e l l  o f  C, 
t 

C{x ,A) :  r c ( x , a i )  
i=-i 

r 
r c(x, i) 

i = l  
b ( x , A } :  C(x,A} = C(x)~)  The bia_===~s o f  o b j e c t s  x to the  s e t  A 

is the excess (either positive or negative} of its 

connections to A less its connections to A. 
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t t 
A X A: Z z c ( a i , a .  )J 

i=l j = l  

r r 

7~ x ~: z z c(:2 i , ~ j )  
i=l j=l 

t r 
a X ~: z r c ( a  i , F j )  

i=l j = l  

GR-clump: U set A is a GR-clump of U (----'> it is a local 

minimum for the following function 

F(A) = A x 7~ 
i i 

AXA+~X~ 

In terms of individual elements, the definition 

can be stated as follows: 

A = {xIb(x,A)>_0VxeA and 

b (y ,A)e  OVye~} 

D i s c u s s i o n :  There  i s  no known way to p r e d i c t  how many GR-clumps 

e x i s t  in  a g i v e n  s p a c e .  The GR-clump f i n d i n g  p r o c e d u r e s  [22] 

p roduce  a s e t  o f  h i g h l y  o v e r l a p p i n g  GR-clumps.  

Phase 3: 

P a r t  1: 

Forming K-Clumps o f  O b j e c t s  

Forra an o b j e c t - G R - c l u m p  I n c i d e n c e  A r r a y  A 

A = ( a i , j )  such t h a t  
• t h  = 1 i f  o b j e c t  j i s  in  the  1 a i , j  

a. = 0 o t h e r w i s e  1 , j  

GR-clump. 
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Part 2: Form a Connection ~latrix F 

F = ( f i  ) s u c h  t h a t  ,J 
fi,j = l(iIJ) 

l(i)+l(j)-l(i,j) 

fi,i = fj,j = 0 

Part 3: Locate K-clumps in F 

Discussion: The K-clumps located in F will be those 

elements which are highly similar in ti~eir distributional 

properties. The threshold value can be used to vary the 

amount of similarity. 
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8 .2  Tlle E x p e r i m e n t  

Phase  i: 

Data Base: Six paragraphs of English text were 

syntactically analyzed in LRS. The outputs were on magnetic 

tape. A computer program was written to take this data and 

form a binary incidence array as follows: 

c l a s s e s  

strings of 

text i,j 

i, j = 1 if string i was in class j 

The list of classes was generated at the same time. 

In the six paragraphs, 129 classes were found. Graph 1 shows 

the rate at which classes were found. 

In t h e  n e x t  s t a g e  o f  p r o c e s s i n g ,  t h i s  i n c i d e n c e  a r r a y  

was u s e d  to  make a c o - i n c i d e n c e  f r e q u e n c y  c o u n t .  F o r t y - f i v e  o f  

t h e  129 c l a s s e s  o c c u r r e d  u n i q u e l y ,  i . e .  d i d  n o t  c o i n c i d e  w i t h  

a n o t h e r  c l a s s .  These  45 were  d e l e t e d  f rom t h e  d a t a  s e t ,  l e a v i n g  

84 c l a s s e s .  

The n e x t  s t e p  was to  n o r m a l i z e  t h e  f r e q u e n c y  m a t r i x  

and compute  t h e  c o n n e c t i o n  m a t r i x  as e x p l a i n e d  i n  t h e  e x p e r i m e n t a l  

d e s i g n .  In  t h e  84 x 84 m a t r i x  t h e r e  were  1012 n o n z e r o  e n t r i e s  

g i v i n g  a m a t r i x  d e n s i t y  o f  14.3%. The c o n n e c t i o n  v a l u e s  r a n g e d  

f rom z e r o  to  3 . 3 3 2 8 3 .  
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Phase 2: 

GR-clumping was done in the connection matrix de- 

scribe in Phase I. Using the pivot variable method of initial 

partitioning [22] 44 GR-clumps were located. Graph 2 displays 

the distribution (by size) of the GR-clumps found. 

Phase 3: 

The c o n n e c t i o n  m a t r i x  was computed as d e s c r i b e d  in 

the e x p e r i m e n t a l  d e s i g n .  K-clumps p a r t i t i o n e d  the s e t  of  

84 c a t e g o r i e s  i n t o c o m p o n e n t  s e t s .  The K-clumps ranged in 

size from 2-14 classes. Graph 3 shows the number of classes 

by size of the K-clumps. 
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