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M O R P H I S M :  A S Y M B O L I C  LIST P R O C E S S I N G  L A N G U A G E  
I 

ABSTRACT 

With the formal study of natural languages, we have obtained 

some residual results which greatly increase our power of logical 

manipulation. Coupled with a computer, our language extends 

enormously the external logic of our computing device. This paper 

is concerned with a well-defined symbolic list processing language 

and a set of operators for this language. These operators, which we 

call morphisms, are themselves operators thereby giving us an 

indefinite nesting ability. We have defined a schematic representation 

of'our operators (called a comb-scheme) and have then proceeded to 

describe a numbering technique which allows us to use these operators 

with a computer. Since our operators and lists are defined at the 

time of execution, our ability to change them is unlimited. 

The pattern of this paper is to build up from an alphabet to words, 

then non-connected words, then lists and the operations on lists and 

finally operations on the operations. We have taken, what we hope to 

be, descriptive examples in linguistics and non-linguistical applications 

in the hope of being representative of our language and easily under- 

standable. 
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MOP,.PHISM: A S Y M B O L I C  LIST P R O C E S S I N G  LANGUAGE 

I n t r o d u c t i o n  

We at the Facult~ des Sciences of the Umverslte de Rennes are 

interested in the mathematical study of languages. Since we have a 

computer (1620), it is only natural that we attempt to combine the 

two. With languages being our major interest, we find that an extensive 

study of lists and symbolic list processing techniques will yield a most 

powerful and broad spectrum of results when applied to a computer. 

It appears that problems involving natural languages and certain types 

of mathematical problems are computer solvable when list processing 

techniques are applied to them. There are also linguistical problems 

which yield beneficial results when they are approached in this manner. 

We are therefore going to define: lists, operations on lists (which we 

call morphisms), and a comb-scheme which allows us to manipulate 

the lists and morphisms; this scheme gives us the ability to manipulate 

almost any pattern that can be handled in a logical manner (in linguistic 

usage, the term logical will refer to letters, words, sentences, 

phonemes; in a predetermined or random occurrence). 

We have defined our operators in such a manner that we allow for 

an indefinite nesting; adding to a computing machine an external logical 

system. Also, our operators, in the computer, are defined at proces~ 

ing time so our ability to change them at execution time is unlimited. 

This paper can be considered to be divided into four sections. 

Part one defines our terms and gives definitions for such things as an 

alphabet, lists, words, non-connected words, etc. Part two defines a 

morphism and our operators on lists. Part three shows our comb- 

scheme. Part four consists of examples: in linguistics; an example in 

the logical generation of a flow diagram into a computer program; and 

finally, an example of the solution of a mathematical problem (the 

arithmetic operations on polynominials of n variables). 
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I. Definitions 

I. 1 Words and Symbols 

Since we are using a computer, 

composed of: 

let us define our alphabet to be 

the Latin capital letters 

the blank (#) for notational purposes but on printed page a blank. 

the punctuation marks . and , 

- the digits 

excluding: = - $ / + @ ( ) and 0 which is also acceptable to the computer. 

I. Z Non-connected words 

Let us put in parallel the Latin phrase: 

nec adulatoribus latus praebes 

and its French equivalent: 

et tune pretes pas le flanc aux flatteurs; 

The Latin word nec corresponds, in French, to the three non- 

consecutive words e_t ... n.e ... pa_.~s and the Latin word praebes 

corresponds to tu ... prates 

Thus it appears that for the words of a language, on the same level 

as words, there is a series of words not necessarily consecutive: the 

non-connected words. For a non-connected word, the components will 

be separated by the symbol: - . For example: 

A T A  - BP,_IQUE 

RI - DO - 

are non-connected words. The first has two components and the second 

has three components. 

1. 3 C o m b - s c h e m e  

In  t h e  f o r m u l a s ,  a s  i n  a l g e b r a ,  we  d e s i g n a t e  a v a r i a b l e  b y  x ( a n d  , 

e v e n t u a l l y  i n t e r v e n i n g  v a r i a b l e s  b y  Xl ,  x 2 ' ' "  ); a n o n - c o n n e c t e d  w o r d  

of  N c o m p o n e n t s  w i l l  be  s c h e m a t i z e d  b y  a c o m b  o r  c o m b  - s c h e m e  
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(eventually transformed into a number) of N teeth ordered from 

left to right (eventually numbered from 1 to N) such that the first 

tooth represents the first component, the second tooth the second 

component, etc. 

1 Z 3 4 5 6 

i. 4 Lists of non-connected words; 

We will separate the lists of non-connected words by a / . 

example:  

For 

RA / TA - PLAN / PLAN - PLAN 

is a list of three non-connected words: the first of one component; 

the other two, two. We will schematize the list by: 

-i 
or if need be by: 

1 Z 3 

or again by: 

i Z 3 

I Z i Z 

i. 5 Designation of lists and their types 

We will designate a list by a symbol (name, a set of letters 

and digits). We will enclose the symbol by the sign @ . This avoids 
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confusing the name of a list with elements of the list e. g. 

@ABS@ = A - B / C / D - E - F where AB5 is an element (or word 

of our alphabet); but @AB5@ designates a list. The list is: 

A-B /C /D-E-F. 

I t  s h o u l d  be m e n t i o n e d  t h a t  a l i s t  c a n  be r e c u r s i v e :  i t  m a y  

c o n t a i n  a l i s t  ( i . e .  t h e  n a m e  of the  l i s t  e n c l o s e d  in  @ s i g n s  w h i c h ,  

of  c o u r s e ,  r e f e r s  to a n o t h e r  l i s t ) .  

A t y p e  of  l i s t  w i l l  be  i n d i c a t e d ,  no t  by  a s e r i e s  of  c o m b s  w h i c h  

a r e  no t  p a r t  of  a k e y b o a r d ;  bu t  by  the  p a r t i c u l a r  l i s t  o f  the  t y p e  

w h e r e  a l l  of  i t s  c o m p o n e n t s  a r e  e m p t y ;  e n c l o s e d  by  two  @ s i g n s .  

F o r  i n s t a n c e ,  

@-//--@ 

designates a list schernatized by: 

i 
2. M o r p h i s m s ,  List operators, and comb construction 

2. 1 M o r p h i s m s  o r  o p e r a t i o n s  on l i s t s  

L e t  @ L I S T  1 @, a n d  @ L I S T  Z @ be two  l i s t s .  We wi l l  d e f i n e  

the  o p e r a t i o n  j u x t a p o s i t i o n  ( p u t t i n g  t h e m  s i d e  by  s i d e )  w h i c h  we w i l l  

designate by the sign / . For example: 

@ LIST 1 @ / @ LIST Z @. 

In  a l i k e  m a n n e r ,  we  wi l l  u s e  the  n o t a t i o n  - to s h o w  the  i n s e r t i o n  

of a w o r d  ( o r  l i s t )  i n t o  a n o t h e r  l i s t .  F o r  i n s t a n c e  t h e  e x p r e s s i o n :  

A -  / B - C - @ X @ / @ Y @ U T  
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i f  w e  d e f i n e :  

@X@:D-E /F/G-H 

@ Y @ = T and becomes 

A - / B - C - D- E / F / G- H- TUT 

Z. Z List ordering and comb scheme constructio n 

Let us consider the following French sentence. 

je ne veux pa_._~s. 

It is written in our alphabet as: 

JE#NE#VEUX#PAS. 

and this constitutes a word in our alphabet. It perhaps may be 

constructed with the aid of the following non-connected words: 

(i) JE - VEUX 

(2) NE - PAS 

(3) # (non-connected word of one component) 

( 4 )  . 

these words, thus ordered, constitutes a llst schematized by : 

1 Z 3 4 

J 

Shuffled according to the following scheme: the non-connected words 

of the list, each one taken once or many times (the @ is taken three 

times), is shuffled into the components of one against the other: thus 

a juxtaposition of the various components in the order where the 

preceding shuffling places them. 
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Z 

3 3 

2 

1 

3 4 

4 

1 
- J 

1 

T h e  f i r s t  l i n e  o f  t he  s c h e m a t i c  r e p r e s e n t s  t h e  l i s t  f r o m  w h i c h  

we s t a r t e d .  We w i l l  c a l l  i t  t he  s o u r c e  of  t he  m o r p h i s m .  

The  s e c o n d  l i n e  r e p r e s e n t s  how we h a v e  s h u f f l e d  the  v a r i o u s  t e e t h  

of  the  s o u r c e .  We  w i l l  c a l l  i t  the  g r a p h  of  the  m o r p h i s m .  

T h e  t h i r d  l i n e  r e p r e s e n t s  t he  n o n - c o n n e c t e d  w o r d  ( h e r e  o f  a 

s i n g l e  c o m p o n e n t ) .  We w i l l  c a l l  i t  t he  t a r g e t  of  the  r n o r p h i s m .  

T h e  t h r e e  l i n e  s c h e m a t i c  r e p r e s e n t s  t he  m o r p h i s m .  

I t  s h o u l d  be c l e a r  t h a t  s i n c e  the  f i r s t  l i n e  o f  the  s c h e m a t i c  

r e p r e s e n t s  a l i s t ,  t he  m o r p h i s m  c a n  o p e r a t e  on a n y  l i s t  o f  t h i s  t y p e .  

Thus, the list: 

A-B /C-D/E/F 

A E C E B E D F  

w i l l  b e c o m e  

T h e  m o r p h i s m  c o n s e r v e s  in e a c h  n o n - c o n n e c t e d  w o r d  the  o r d e r  

o f  i t s  c o m p o n e n t s  ( J E  p r e c e e d s  VEUX,  e t c .  ). T h i s  i s  a c o n d i t i o n  

we m a y  o r  m a y  no t  i m p o s e  on  a m o r p h i s m .  I f  we  i m p o s e  i t ,  we a r e  

s a y i n g  t h a t  i t  i s  f o r b i d d e n  to  c r o s s  t h e  t e e t h  of  t he  c o m b s .  

L e t  us  n o t e  t h a t  we c o u l d  a l s o  h a v e  c o n s t r u c t e d  the  s e n t e n c e :  

j e  ne v e u x  p a s  . 

by starting with the list: 

JE # - VEUX / NE # - # PAS / . 
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which yields the following morphism: 

I. Z . 3 

E ,I i ~ I I 

L e t  us  b r i e f l y  c o n s i d e r  t h e  f o l l o w i n g  G e r m a n  s e n t e n c e :  

Du  r a ~ n s t  d i e s e s  e i n  . 

We  c o u l d  d e f i n e  i t  w i t h  t h e  f o l l o w i n g  l i s t :  

DU - ST  / E I N  - R.AUlVi / D I E S E S  / # / . 

f r o m  w h i c h  we o b t a i n  t h e  f o l l o w i n g  m o r p h i s m .  

< 
# 

9 -  

i .I 
~. 3 L I 

i 

H e r e  t he  m o r p h i s m  c o m m u t e s  the  t e e t h  o f  t h e  s e c o n d  c o m b  

o f  t h e  s o u r c e .  

1 
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2. 3 Numerotizing the morphisrr~ 

It is more convenient to use numbers instead of teeth and combs 

for the input to a computing machine. We have therefore designed the 

following type of numbering system for our morphisrns. 

We will define a morphism by a symbol (set of letters and digits). 

We shall p1"ecede this symbol by the sign $. For example: 

$ PSI 

will designate a morphism. 

Let @A @ be a list of the source type of $ PSI; the resultant 

list of @ A @ transformed by the morphism will have the following 

notation: 

$ PSI ( @A @). 

The morphism itself will be notated by the following type of its 

source list between two $ written as a series of integer triplets 

representing the series of teeth of the graph: the combs of the graph 

being ranked in the order of the encounter of their first teeth going 

frorn left to right. .%11 of the teeth of the graph will be represented 

by three integers each one being separated by a comma: 

i) the rank of the comb of the graph to which it belongs; 

Z) the rank of the corresponding comb of the graph; 

3) the rank in the comb of the source of the tooth, corresponding 

to the given tooth of the graph. 

The target and the correspondence between the graph will be 

indicated by the symbols 

- and / 

placed between the triplets: 

two triplets separated by the sign., correspond to a similar tooth 

of the target; 
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two triplets separated by the sign - correspond to two different 

teeth of the target belonging to a single comb; 

two triplets separated by the sign / correspond to two different 

teeth belonging to two different combs; 

two triplets separated by the sign . will correspond to the same 

tooth of the target. 

For example, let us describe the rnorphisrn for the previously 

mentioned German sentence: du ra[h~nst dieses ein. We shall call 

it $ PHI and schernatize it as follows: 

i 2_ 3 W 

I ~ ..... I L I 1 
~ Z 

~ ~ J 

$PHI=@ - / - /// @ $ I, i, i. Z, 4, 1.3, Z,Z. I, I,Z. 4,4, 1.5,3, 1.6,4, 1.3, Z, 1.7,5, i$ 

For a second example, let $ PSI be the rnorphisrn schernatized by: 

I ~- 3 % 

I I 1 I I 
Z- 

I 

1 I 
I 
l 

$ PSI=@ -/-//@ $I, 1,3. Z, 3, 1.3, Z, 1.4,3, i-i, I,Z. 5,3, 1.3, Z,Z. 6,4, 1--/7,4;15 
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In  th i s  e x a m p l e ,  the  t h i r d  too th  of the f i r s t  c o m b  of the t a r g e t  

does  not  c o r r e s p o n d  to any  too th  of the g r a p h ;  t h i s  is  i n d i c a t e d  in 

the s e r i e s  of i n t e g e r  t r i p l e t s  by the  e m p t y  c o m p o n e n t s  h a v i n g  the 

s ign  / . 

When  we f o r b i d  the c r o s s i n g  of the t e e t h  in the  c o m b ,  the t h i r d  

n u m b e r  of the t r i p l e t  r e p r e s e n t i n g  a tooth  of the g r a p h  is  a m b i g u o u s  

fo r  o u r  n o t a t i o n a l  p u r p o s e s .  We m a y ,  t h e r e f o r e ,  r e d u c e  o u r  n o t a t i o n  

f r o m  t r i p l e t s  to c o u p l e t s .  

T h u s  $ PSI wou ld  b e c o m e :  

$ PSI = @ - /-// @ $ i, i. 2,3.3,2.4,3-i, 1.5,3.3, 2.6,4-/7,4 5 . 

Z. 4 O p e r a t i o n s  on the  l i s t s  by m o r p h i s m s  

In  a p r e c i s e  m a n n e r ,  we c a n  show that  the  s c h e m e  of a m o r p h i s m  

$ 1AO is  d e t e r m i n e d  by the  inpu t  of the l i s t s .  The  f i r s t  h a v i n g  the n o t a t i o n :  

@ x @  

c o m p o s e d  of w o r d - s i g n s  d i f f e r i n g  f r o m  e a c h  o t h e r  and  s u c h  tha t  $ RO 

can  o p e r a t e  on i t s e l f ;  the  s e c o n d ,  t r a n s f o r m e d  f r o m  @ X  @ by $ RO 

and  h a v i n g  the no t a t i on :  

@Y @= $ R o ( @ x @ ) .  

The  s o u r c e  and  the t a r g e t  of the s c h e m e  is  none  o t h e r  t han  the 

s c h e m e s  of @ X  @ and  @Y @ r e s p e c t i v e l y .  T h i s  is  due to the  g r a p h  

t ha t  is  g iven  by the  c o m b - b i n d i n g s  of @ Y@ as  e a c h  one can  be i d e n t i f i e d ,  

too th  by tooth ,  f r o m  a c o m b  of the s o u r c e .  

In e f f ec t ,  the  c o m b  s c h e m e s  of @ X @ c o i n c i d e  wi th  the c o m b - b i n d i n g s ;  

by s e r i e s ,  if  two l e t t e r s  of the  s u b s t a n c e  @ Y @ of @ Y @ have  the s a m e  

pa th .  The  c o m b s  of a g r a p h  of $ 1%O a r e  none  o t h e r  t han  the c o m b - b i n d i n g s  

of @ Y @ in  p o s i t i o n .  M o r e o v e r ,  s i n c e  a l l  the  w o r d  s igns  of @ X @ a r e  

d i s t i n c t  b e t w e e n ,  we h a v e  the a b i l i t y  to d i s t i n g u i s h  the  c o m b s  f r o m  e a c h  

o t h e r .  T h u s ,  we know w h i c h  c o m b  of the  s o u r c e  c o r r e s p o n d s  to w h i c h  

c o m b  of the  g r a p h ;  and  in th is  c o m b  of the s o u r c e  w h i c h  too th  c o r r e s p o n d s  
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to which tooth under consideration; equally, we know, thanks to the - 

and / , the group of teeth of the graph which has joined the above 

bracketing of the teeth of the target. 

We can, therefore, reconstitute the complete scheme of the 

morphism $ I%O. 

Here is an example. 

@x@= 

@Y@- 

! 

I 
U [ - / I  1 

! 
A B 

1 .  . . .  + 

The m o r p h i s m  $ RO w h i c h  t r a n s f o r m s  @ X @ in to  @ Y @ 

for its scheme: 

2. 2 4- 

I I I 1 1 I 
~ 2. 3 

| 
2- 

has  

%- 

I 

@Y@=$Ro(@x@) 
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For a second example let @ M @ be: 

L !: [" I I I "1 
N I ~ l .  2. 

and the word is transformed by the morphism $ IZO of the following scheme: 

9.. "~ 

3 

, , , ,  , , , ,  

I~..] 

2 .  

J 

I 
3 

3 2 .  t 

1 -  ~ . j  

from the list: 

iii i i ii 

/L ' J,, 
giving: . . . . . . . . . . . . . . . . . . . . . . . . . . .  

@x@= 

@Y@= 

!: 7. X~ 

_ _  _ _  

is the word @ M@ is none other than: 

SRO(A / @X@ / @Y @) 

where A / @ X @ / @ Y @ designates the product of a juxtaposition: 
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A / '  / "¢ 
X z " -  "A z - -  

J L !: 

The above is simply to say that there always exists a 

form of this comb-scheme and list type structure. Our canonical 

form (going from left to right) for: 

I 

ii l l! ! 

canonical 

is as  follows: 

$RO(A /@X@/@Y@). 

2.5 Operators defined from morphisms 

We are going to define from the rnorphisms some operators on sets 

of lists. We will show later that the operators are themselves morphisms: 

therefore they are recursive and this then gives us the ability to have an 

extended logic for our computing language. 

There are three operators for our morphisms: the / product, 

the // product and the ~ product (or composition). 

I. The  / p r o d u c t  of two m o r p h i s m s  

L e t  $ RO and  $ MU be two m o r p h i s m s .  

fo l lowing  no ta t ion :  

The / product has the 

( $R.O / S M U )  

and is defined for any list @ X @ : 
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($1%0/$MU)(@X @} = $RO ( @ X @) /$MU(@ X @ ) 

( i . e .  the l i s t  r a n s f o r m e d  by $1%O/$MU of @ X @ is  the p r o d u c t  of 

the j u x t a p o s i t i o n  of l i s t s  t r a n s f o r m e d  f r o m  @ X @ by $ I%O and $MU).  

II. The //product of two morphisms 

Let $RO and $KHI be two morphisms. 
/ 

notation. 

We shall use the following 

($RO//$KHD. 

F o r  a n y  l i s t s  @ X  @ / @ Z @ 

($ROIISKHI)(@X@ I@Z@)=$RO(@X@) I $KHI(@Z@) 

It should be mentioned that the // product of two morphisms is 

defined only when they are from the same source. 

III. The  * p r o d u c t  (o r  compos i t i on}  of two m o r p h i s m s .  

L e t  $1%O and  SPI be two m o r p h i s m s  such  tha t  the  s o u r c e  of $RO is  

i d e n t i c a l  to the t a r g e t  of $PI .  The * p r o d u c t  h a s  the  fo l l owing  no ta t ion :  

( $ R o  • SpI) 

F o r  a n y  l i s t  @ V @ 

($RO * $PI}(  @ V @ ) = $RO($PI(  @ V @ )) 

It should be mentioned that since the * product of two morphisms 

is defined only if the source of $RO is identical to the target of SPl, it 

thus transforms any list of source type of $PI into a list of target type 

$ao. 
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Z. 6 _Product of m o r p h i s r n s  a r e  t h e m s e l v e s  m o r p h i s m s  

The  o p e r a t o r s  d e f i n e d  in Z. 5 / p r o d u c t ,  / /  p r o d u c t ,  and  ':'- 

p r o d u c t  of m o r p h i s m s  a r e  m o r p h i s m s .  

In e f fec t ,  t hey  can be r e p r e s e n t e d  by s c h e m e s  which  a r e  s c h e m e s  

of m o r p h i s m s .  
\ 

The s c h e m e  ( $ R O / $ M U )  is c o n s t r u c t e d  as  fo l lows :  

The  f i r s t  l ine  is  the  s o u r c e  c o m m o n  to the  s c h e m e s  of $1%O 

and SMU. 

The  s e c o n d  and  a r e  t h o s e  of SILO and  $MU p l a c e d  s ide  by s ide ;  

t h o s e  of $MU to the r i g h t  of those  of $1%O. 

For instance, given: 

$1%O: $MU: 

I , I l ,I 

[ I k I 

The s c h e m e  of ( $RO/$MU)  is  as fo l l ows :  

t 
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The  s c h e m e s  of ( $ R O / / $ K H I )  a r e  c o n s t r u c t e d  as  fo l l ows :  

We m o d i f y  the  n u m b e r  of the c o m b s  of the s c h e m e  of $KHI 

whi le  a d d i n g  to e a c h  of t h e m  the n u m b e r  of c o m b s  of the s o u r c e  

of $RO; thus ,  we can  p l a c e  the s c h e m e s  of $1ZO and  $KHI s ide  by 

s ide ;  t h o s e  of $KHI to the  r i g h t  to t h o s e  of $RO. 

F o r  i n s t a n c e ,  g iven :  

$1%O: $KHI: 

I 1 

I 

I 

q 
i 

l 
The scheme for ($RO//$KHI) is as follows: 

2. .X 

1 I L L I i 

l 

9 . .  

1 
I 

I 
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The s c h e m e  of ($RO ~',' $PI)  is  c o n s t r u c t e d  as  fo l l ows :  

The s o u r c e  is  tha t  of $PI .  

The  g r a p h  is tha t  of $RO w h e r e  we r e p l a c e  e a c h  c o m b  ( w h i c h  is 

a l s o  a c o m b  of the  t a r g e t  of $PI)  by the s y s t e m  of c o m b s  to w h i c h  it 

corresponds in the  graph of $PI. 

The target is that of SRO. 

For instance, given: 

$R.O: $PI :  

I 

i I I I 
| 

l t- I t 

The s c h e m e  of ($R.O '~ 

I 

IIII II 

$PI) is as follows: 

I 
I 

l 
~A 
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T o  c o n s t r u c t  t h e  s c h e m e  of  t h e  ~ p r o d u c t  o f  $RO a n d  S P I ,  

we  c a n  a l s o  c h a r a c t e r i z e  i t  b y  i t s  a c t i o n  on  a l i s t  @ X @ of  s o u r c e  

t y p e  of  $ P I :  u n i q u e l y  c o m p o s e d  of  w o r d - s i g n s  d i f f e r e n t  f r o m  e a c h  

o t h e r .  F o r  t h a t ,  we  w i l l  m a k e  $ P I  a c t  o n  @ X @, t h e n  SRO on  

$PI ( @ X @ ). 

Retaking the previous example; given: 

@x@= 

SPI( @ x @ ) - 

-- %" 

f I 
A'~ A~ A 3 A~ 

7. 

from which is defined the scheme for ($RO • $pl). 

The different products /, //, and * defined between the 

rnorphisms are not associative between themselves. They are 

associative when there intervenes only the product of a single sort 

(/, //, or ~ ) which permits in this case the suppression of 

parenthesis. Thus: 

(($RO ':' $PI) * $XI) = ($RO * ($PI * $KHI )) may also 

be written as: 

$RO * $PI * XI . 
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3. Practical application of symbolic list p.roces.sing ' 

3. i Introduction 

The actual programming of a symbolic list processing system 

presents many interesting and varied problems and possibilities. 

The power of this type of list manipulation opens the way to many 

hitherto unsolvable (computer-wise)problems. 

Now that we have defined our language, it naturally behooves us 

to ask how, and to what, we can apply it. We are going to illustrate 

three different types of problems to show that we have a general purpose 

language. The first will be a simple example of list processing manipula- 

ting variables in algebra. The second will be an application of 

morphisms to generate FOP~TRAN (or any symbolic programming 

system) in the same general manner of SHADOW but with the added 

difference that our input is a list instead of a single variable. The third 

example will be an application to the natural languages. 

3. 2 Operating on polynominials using symbolic list processing 

We have written a program for the 1620 computer in FORTRAN 

which allows us to operate on sets of polymminials of N variables 

varied to a power p. The only limitation being that of memory size i. e. 

N p size of memory. If we consider an external memory source such 

as tapes or discs this does not become much of a limitation. 

The operations we are treating at present are addition, subtraction, 

multiplication and raising to a power. We are considering the 

differenciation but that we will leave to a later date. Mathematically 

expressed, we are doing the following: 

Let PI(Xl, X Z ..... XN) and Pz(XI, XZ, ..... XN) 

be polynominials when the variables can be raised to the j power and all 

combinations. An example will clarify this section. Let: 

P1 

PZ 

3 2 3 
= X + 5X 6X + i + Y - CY + 4XY 

= -3Y 2 6X2y + X 
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2 
We are able to compute Pl ~:= PZ' P1 + P2 ' and any combination 

of these pclynominials. It turns out that this can be handled ve~.y 

easily as a function of lists. Our limitations, at Rennes, being simply 

memory size as we need to set up tables for the coefficients anu the 

16Z0 is rather limited in memory capacity and lists are very heavy 

users of tables. This limitation would be relatively nil, if we had an 

external memory device such as discs or tapes. 

3.3 Generating computes.programs from flow charts. 

A practical application of the nnorphisms is the translation of 

flowcharts into programs. This section is therefore concerned with 

that problem. 

A typical flowcharting or programming problem. Let us 

consider that we wish to solve the following general type problem: 

3 
Z= ~$'~ Y 

x = 0.(. i)z0.0 and Y = -4. O( I. 0)8. 0 

I REAm "~I 
~o "%/o T' 

the flowchart would appear to be of the following form(since there are 

no fixed rules for the logical flow or organization of a computer solvable 

problem, this flow chart is as good as any). 

I 
~ -  x= >~ +o.1 

F 

"1-"f,- 

where: X 0 = Z0.1 = 0 , XhdAX 

Y0 = -4, YlViAX = 9 for our original problem. 
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3. 4 The ccmb-schematic 

Let us number each box from left to right. Now let us draw 9 

teeth and number then as follows (we need the nineth as there are two 

possible flows for the lost tooth). 

l lII111 
i Z 3 4 5 6 7 8 9 

It follows that the 9th tooth meets the first, 

ill L1 
Z 3 4 5 6 7 8 9 

so let us join them: 

Also, 

t h e m ,  

i 
, 

1 2 3 

the 8th meets the 3rd, and the 4th meets the 6th. 

we will have: 

i ll kk 
4 5 6 7 8 

If we join 

Now, for the sake of clarity, and to take advantage of our comb-scheme, 

we will re-number them as follows: 

4 6 4 5 1 Z 3 3 
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3. 5 T h e  l i s t  of o u r  f l o w c h a r t  

F o r  t~e  l i s t  of  o u r  f l o w c h a r t ,  i t  i s  n e c e s s a r y  to  w r i t e  o n l y  the  

i m p e r a t i - ~ e  i n s t r u c t i o n s .  We w i l l  g e n e r a t e  t he  I F  a n d  the  r i g h t  

p a r a n t h e u ! s  w i t h  the  c o r r e c t  f l o w  f r o m  o u r  m o r p h i s m .  T h e r e f o r e ,  

the  l i s t  i s  a s  f o l l o w s :  

READ I00, X0, 

X:X0 

Y=Y0 

Z = SQP~TF (X) 

Y=Y+I.0 

Y - YIVlAX 

X=X+0.1 

X - XMAX 

O 

XIVIAX, YO, YMAX 

* Y * * 3 

the program will also generate an END statement. 

The type of list is: 

I/lll--I/--I/ 

Using the definition of a list as in section two, we have: 

@ MU @ = ~EAD i00, XO, XlVIAX, YO, YMAX/X=x0/Y=Y0/Z=SQRTF(X) 

* Y * * 3/Y=Y+I.0/Y-YMAX/X=X+0. I/X-XMAX//0 

(the notation 0 is to signify the end of a list since a list may be of 

variable length. For descriptive purposes, we will continue to use the / 

to delimit an element of a list and a - (dash) to denote an inse~t. In 

practice, (for this particular problem), we cannot use these symbols as 

they are used by FORTRAN and we cannot distinguish whether they are 

for FORTRAN or for our list processing language. 
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3 . 6  T h e  M o r p h i s m  

A s  m e n t i o n e d  

$PI( @ MU @ ) = $i, I. 2, I. 3, 1.4, 1.5, i. 4, Z. 6, 1.3, Z. I, Z.$ or 

SPI( @MU @)= @ /////--//--//@= $i, I. Z, 1.3, 1.4, 1.5, I. 4, Z. 6, 1.3, Z. 1,2 5 

(Since a morphism may be of any length, we must also define its length) 

3.7 Decomposing the morphism 

For convenience, let us re-order the morphism into tabular form. 

i B C 

1 1 1 

Z Z 1 

3 3 1 

4 4 1 

5 5 1 

6 4 Z 

7 6 1 

8 3 Z 

9 1 1 

We can scan the list C until we come to an entry Z. This will 

cause an IF( to be generated. We follow this by the entry in the list 

(in our case Y-YMAX). This is followed by a right paranthesis. The 

FORTRAN statement numbers are respectively the corresponding 

entry for ]5 taken twice (separated by commas) and the value of i+l. 

This is true because all orders following an IF must have a path so 

they must be numbered i.e. carry a statement number. 

3. 8 Advantages and power of symbolic list processing with morphisms 

W i t h  t h e  e x a m p l e  s h o w n  h e r e ,  t h e  r e a l  p o w e r  d o e s  n o t  c o m e  to  l i g h t .  

H o w e v e r ,  t h e r e  a r e  s o m e  t h i n g s  w e  c a n  d o  h e r e .  W e  c a n  t a k e  a d v a n t a g e  

o f  i n s e r t s .  W e  c a n  i n s e r t  e l e m e n t s  i n t o  o u r  l i s t  b y  a d d i n g  a n  e l e m e n t  to  

t h e  e n d  o f  t h e  l i s t  a n d  f o r  p u t t i n g  a d a s h  i n  t h e  l i s t ;  o r  w e  c a n  e v e n  i n s e r t  
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a list /s within our original list by inserting the name of a new list /s 

enclosed in two @ signs. 

It should also be mentioned here that it is not necessary to punch 

redundant coding in the above example. It suffices simply to add the 

number of the element to the morphisrn list. For instance in our 

example if we wanted to do another series of calculations over the 

same range, we need only punch a new entry for Z (or some other 

variable with another symbolic name) and repeat the tables. 

With a little imagination, it is easy to see that if we can generate 

an IF statement, we can search to find out if our variable starts with 

the letters i, j, k, i, m, or n and generate a DO statement. 

Unfortunately, this, despite IBM's claim of FORTRAN's compatibility 

between machines, creates the problem of being machine oriented 

e.g. the 704/7090 etc. permit a DO loop to have a maximum value of 

3Z, 767 while the decimal machines will easily accept 99,999. 

We could also attack the logical schematic of a flowchart with 

IF statements but this poses to the problem of ordinary usage and 

becomes completely computer oriented. For example, we can generate 

a statement of the following type: 

(i) IF ( ) ~<, ~, 

(Z) IF ( ) ~ , ~,0< 

(3) IF ( )o~ , ~ , "~ 

Which pattern shall we select? We can't accept the third one for a 

binary machine as floating point equality is a rather elusive animal 

due to binary round off. 

This example was chosen to demonstrate that with list processing 

we can generate FORTRAN programs. 
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3. 9 Linguistic Transformations 

Let us state the following rules (not quite foreign to Ingwes): 

@ SEN @ ----->$LA ",~ $RO ( @ SUB @ / @ VER @ ) 

@ vE• @ ----->@ VER@ (i=0, l, Z, 3) 
I 

@ VER.@-- - - - -~$RO ( @ MOD.@ / @ VER.@ ) 
J 3 1 

@ SUB @ - - - - -~ #  T H E Y -  

# H E - S  

# THE-LINGUISTS- 

@ VERO @----~# INSERT - # (or # CLIMB-UP #... ) 

@ MODI @ ~ # BE-EN 

@ MOD2 @ -->-# BE-ING 

@ MOD3 @ ------'~.# HAVE-EN 

$RO is a schuffling which out of two intercepted words makes a 

third one, according to the following scheme: 

I 
: e.g. $RO(A-B-/C-D) = A-CBD 

$LA is a "junction" of the two components in one: e.g. SLA(A-B) = AB. 
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Now we can derive a sentence (morpho-phonenaic rules are 

omitted in our sketch, they happen to be useless for this example...). 

@ SEN @ ~ $ L A  ,:~ $1%O (# THE # LINGUISTS / $1%O 

(@ MOD3 @ / $1%O (@ MODZ @ / # INSE1%T ))) 

@ SEN @------~$LA ~ $1%O ( @ SUB @ / $t%O ( @ MOD3 @ / 

$1%O ( @ MODZ @ / @ VEt%0 @ ))) 

that  is e. g. 

# THE # LINGUISTS # HAVE # BEEN # INSE1%TING # 

or in the shape of a tree. 

@ SEN @ 

SLA ~'$RO 

@SUB @ I @ VEt% @ 

# THE # LINGUISTS @ VE1%3 @ 

$ ao 

# HAVE-EN I @ Vm1%z @ 

, $1%o 

# BE-ING / @ VER0 @ 

# INSERT-# 
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