
A Quantif ier Scoping A l g o r i t h m
w i t h o u t A Free Variable Constra int

I n n L ew in

Department o.[Artificial Intelligence
University of Edinburgh

80 South Bridge
Edinburgh EH1 1HN

emaih il@aipna.ed.ac.uk

Abstrac t

Three recent demands on quantifier scoping al-
gorithms have been that they should be explic-
itly stated, they should be sound and complete
with respect to the input sentence [Hobbs and
Shieber 1987] and they should not employ a 'Free
Variable Constraint ' [Pereira 1989]. The first de-
mand is for good academic practice. The second
is to ask for an algorithm that generates all and
only the possible scopings of a sentence. The
third demand is for an algorithm that avoids
appealing to the syntax of logical form in or-
der to determine possible scopings. I present a
modified version of [Hobbs and Shieber 1987],
which simplifies its operation, and can be con-
sidered sound and complete, depending on what
interpretations of English sentences are deemed
possible. Finally, any doubts concerning the use
of logical form syntax are avoided.

1 I n t r o d u c t i o n

[Hobbs and Shieber 1987] presented an algorithm
to generate quantifier scopings from a represen-
tation of "predicate-argument relations and the
relations of grammatical subordination" (pg 49).
This representation is successively modified by
a recursive algorithm until all the quantifiers
present in the input have been dealt with and
given scope over some part of the output . A
sample input representation is,

i. Ioves(<a x woman(x)> <every y man(y)>)

where representations of quantified noun phrases,
called complex terms, are left as arguments to

the verb. A sample output is

2. (a x woman(x) (every y man(y) lovesCx,Y)))

which uses a four-part quantifier notation, and
in which no complex terms are present. In con-
verting 1) into 2) the recursive procedure may
be called upon representations of intermediate
format, eg

(a woman()loves(<every y man(y)>))

where a four part quantifier phrase has an em-
bedded complex term.
The algorithm is claimed to be more successful
than previous accounts in dealing with complex
noun phrases such as "every representative of a
company" and in coping with certain 'opaque'
predicates such as negation. 1
Two properties of an algorithm which Hobbs
and Shieber (H&S) approve of are completeness
and soundness. An algorithm with these prop-
erties might be used as a benchmark for other
algorithms designed for efficiency or the use of
heuristics governing the plausibility of the vari-
ous interpretations. Unfortunately, demonstrat-
ing that H&S's algorithm is sound requires a
semantics for the input language and the inter-
mediate forms. That is not straightforward.
I present a modified algorithm which avoids such
intermediate forms. The input to the algorithm
consists of English syntax. The steps of the al-
gorithm retrace steps through a t ruth definition
for the input language. Clearly, the algorithm is
sound and complete with respect to that. The
algorithm is also sound and complete with re-
spect to English, if you agree that the input

1They acknowledge [Keller 1986] as a similar solution

190

language fairly represents the actual language
of English speakers. Furthermore, the algorithm
is somewhat simpler than H&S's algorithm and
makes no appeal to logical syntax. There is a
Prolog implementation of the algorithm.

2 Quanti f icat ion in Logic

Semantic theories generally recurse over the syn-
tax of the object language. For example, fol-
lowing the procedure and notation of [Tennant
1978], '~ we say that

g satisfies"(Vxf(x))"
iff for every 0, g(x --+ o) satisfies "f(x)"

Thus, the satisfaction of "(Y x f(x))" is given in
terms of the satisfaction of formulae of the form
"f(x)". Truth is defined as satisfaction by the
null assignment, N. Given the following axiom

g(x -* a) satisfies "f(x)" iff f ' (a)

then we can produce the following proof

"(V x f(x))" is true
iff N satisfies "(V x f(x))"

for every o, N(x o) satisfies "fix)"
iff [or every o, f ' (a)

Finally~ formalising our meta.language gives

"(V z f(x))" is true iff (V c~ f ' (a))

This idea can be extended to structurally am-
biguous sentences of English. Suppose C is some
environment containing a complex term such as
"<a y woman(y)>" , then

g satisties C(< all y woman (y) >)
if (All a g(y --~ a) satisfies "woman(y)"

g(y a) satisfies c(y))

Here, C(y) indicates the environment C(<a y
woman(y) >) with y replacing the complex term.
The extension involves two key changes. First,
we employ a four part notation in the meta-
language. Let us say that (All x f(x) g(x)) ab-
breviates the English: for every object x such

~We assume g is an assignment from variables to ob-
jects dealing with all variables required, g(x --~ a) is g
modified so that x is assigned to ~. Greek letters are
reserved for meta-language variables.

that f(x) holds, g(x) alsoholds. Secondly, we use
a simple conditional rather than a bi-conditional
in the rule. The reason for this is simply that
an ambiguous sentence such as 1) is true in ei-
ther of two conditions. The theory will predict

"(loves <a x woman(x)> <every y man(y)>)"
is true if

(a a woman'(a) (every /9 man'(f/) loves'(c%fl))

and also that
"(loves <a x woman(x)> <every y man(y)>)"

is true if
(every 0 man ' (a) (a fl woman'(f~) loves'(a,/9))

We ensure 1) is not true in any other condi-
tions by adopting a general exclusion clause that
a sentence is not true except in virtue of the
clauses of the given theory.

3 Comparison and Illustration

The primitive operation of our algorithm will
be to apply a complex term to a formula con-
taining it, e.g. to apply <q x r(x)> to p(<q x
r(x)>). The result of application is a new four
part quantifier expression whose first two parts
are q and x, whose third part is the result of
recursing on r(x) and whose fourth part is the
result of recursing on p(x) (the formula itself
with the complex term replaced by the variable
it restricts).
For example, by choosing <a x woman(x)> first
in 1), the algorithm will construct a new expres-
sion derived from "a", "x" and recursions on
"woman(x)" and "loves(x <every y man(y)>)".
The first recursion will result in woman(x). The
second will build yet another term from "ev-
ery", "y" and further recursion on "man(y)" and
"loves(x,y)". The final result will be

(a x woman(x) (every y man(y) loves(x,y)))

Clearly, by choosing <every y man(y)> first, the
alternative reading of the sentence would have
been produced. Quantifiers chosen earlier re-
ceive wider scope. We work our way through
the formula outside-in. [Woods 1968] explained
the advantages of a top-down treatment of quan-
tified noun phrases.

191

The basic operation of H&S is similar. An ap-
plication builds a four part t e rm whose first two
parts are q and x, whose third part is r(x) and
whose fourth part is the formula with x replac-
ing <q x r (x)>) . The result is then recursed
upon in order to deal with other complex terms
in the formula.
Now consider complex noun phrases such as "ev-
ery representative of a company". These are
success cases for H&S. The new algorithm deals
with t hem without alteration. For example ~

3. arrived(<every x
a n d (r e p (x) ,

of(x, <a y c o m p a n y (y) >) >)

We allow "every" to take wide scope as follows.
First, we construct a new term from "every" ,"x"
and recursions on "arrived(x)" and "and(rep(x) ,

> " of(x, < a y company(y))) . The recursion on
"arrived(x)" simply produces "arrived(x)". The
recursion on

"and(rep(x) , of(x, <a y company(v)>))"

will lead us to construct a new te rm from "a ' ,
"y" and the results of recursions on "company (y)"
and "and(rep(x),of(x,y))". These last two re-
cursions are again simple cases, 4 resulting in

(a y company(y)
and(rep(x) , of(x,y)))

for "and(rep(z) , of(x, <a y company(y)>))" .
With this result, we can complete our analysis
of 3 itself.

(every x
(a y company(y)

and(rep(x) , of(x,y)))
arrived(x))

for the whole input.
In comparison, H&S use a much more complex
mechanism. They do this because otherwise deal-
ing with <a y company(y)> first results in

3I assume H&S's syntactic analysis
4Actually, there is an issue concerning "and", forced

on us by H&S's syntactic analysis. The issue is whether
quantifiers can be extracted across conjunctions. For
present purposes, I assume they can - indeed, that the
recursive rule for "and" only applies when the environ-
ments C and D in "and((,D)" contain no complex terms.

(a y company(y)
arr ived(<every x and(rep(x) , of(x,y))>)

and recursion on this produces

(every x and(rep(x) , of(x,y))
(a y company(y)a r r ived(x)))

which is not the required reading of the sen-
tence. It also contains a free variable. H&S
therefore forbid the algori thm to apply complex
terms which are embedded within other complex
terms. Also, the restrictions of complex terms
are recursively scoped with a flag set so that
this call of the procedure re turns partial results
(still containing complex terms), as well as full
results.

4 Negat ion

There are two readings of the sentence

4. Everyone isn't here

depending on whether "not" or "every" takes
wider scope. In ordinary logic we have

"not(p)" is t rue
iff it is not the case that "p" is true

Suppose C is an environment containing an oc-
currence of "not", then

g satisfies C(..not..)
if it is not the case tha t g satisfies C(. . . .)

Here the formula on the right-hand-side is just
tha t on the left, with the occurrence of "not"
removed. The ambiguity in 4) arises in exactly
the same manner as quantifier scope ambigu-
ities. Using one rule (negation) before another
(quantification) leads to wider scope for the first
application.
In contrast , H&S analyse 4 syntactically as

no t (here (<every x person(x)>))

and mark "not" as being opaque in its only ar-
gument. The rule for opaque arguments allows
them to be scoped first thus giving H&S the nar-
row scope "every" reading.

192

This use of the terrn "opaque" is somewhat non-
s tandard since "not" is not usually considered to
be opaque.

5 P r o n o u n s

Introduchlg complex noun phrase led to increased
complexity in the H&S algorithm. The intro-
duction of s t ructure such as

5. Every man saw a plcture of himself

where "him" is bound by "every man" leads to
yet more. Take the representat ion of 5. as

6. saw(<, ,very x m a n (x) > , < a y p ic ture(y ,x)>)

Applying <every x man(x)> first, via the H&S
mechanism, gives

(every x man(x) s aw(x ,<a y p ic ture(y ,z)>))

Application of < a y p ic ture(y ,x)> would now
lead to "x" being free. H&S prevent this by stip-
ulating that a complex term is applicable only
if all free variables in the term are also free in
the containing formula. [Pereira 1989] calls this
'The Free; Variable Constraint ' and complains of
an appeal to logical syntax.
Our own methodology avoids this. First, note
that 6) is supposed l;o be a purely syntact ic
s tructure. The occurrence of "x" in "picture(y,x)"
represents the pronoun "himself", and the fact
that "x" also occurs in "<every x man(x)>"
represents the grammatical relation holding be-
f~ween "<every x man(x)>" and "himselP'. Coin-
dexing is used here just to indicate certain gram-
matical relations. ~ Tile following notat ion is
clearer.

saw(<every x man(x)> ,
<a y picture(y,himself-x)>)

Now, we alter our quantification rule so that if
C is an environment containing <q x r (x)> , our
new term is constructed from "q", "x", and re-
cursions on "r(x)" and C where <q x r (z)> and
all embedded coindexed reflexives are replaced
by "x".
~;uppose vce choose to apply

~This is one area where H&S'e analysis is d]fflcult to
follow - wh~t is the role of variables in the input and
intermediate forms ?

< a y picture(y,himself-x)>

first to 6). Then we construct our result from
"a ' , "y" and recursions on both "saw(<every
x man(x)> ,y)" and "picture(y,himself-x)" ; the
final recursion cannot proceed however, for we
have no rule to interpret a reflexive in this posi-
tion. There is no appeal to logical syntax, only
English syntax.
The same holds true of non-reflexives as in

7. Every man saw a friend of his

where "every man" and "his" are co-indexed. 6

6 S u m m a r y and Conclus ion

A modification to the algorithm of [Hobbs and
Shieber 1987] based on a hint from standard
logical theory has led to a simpler algorithm,
and one which makes no illegitimate appeal to
tile syntax of logical form. The algorithm is
sound and complete with respect to the input
language since it retraces the semantic defini-
tion of that language. The degree to which it
matches our intuitions concerning English deter-
mines how good a contr ibut ion to natural lan-
guage processing it is.

A c k n o w l e d g e m e n t ~

Helpful comments on this work have been made
by Robin Cooper, Graeme Ritchie and audiences
at both the A.I. Natural Language Group and
the Cognitive Science Formal Semantics Work-
shop in Edinburgh.
Tile research was supported by SERC research
studentship no. 88304590

References

[1] Hobbs J .R. , and Shieber S.M., 1987, 'An
Algori thm for Generat ing Quantifier Scop-
lugs' Computational Linguistics 13,num-
bers 1-2, January- June 1987.

6There are other uses of pronouns not treated in the
version of the algorithm glven here. For example, there
i~ a possible deictie use of "his" in 7). Nor do we aceotmt
for "donkey" pronouns tmeh ~ts Every woman who saw a
man disliked him.

193

[2]

[3]

[4]

[5]

Keller W., 1986, 'Nested Cooper Storage ~
Natural Language Parsing and Linguistic
Theory edited by U.Reyle and C.Rohrer
432-447, Studies in Linguistics and Philos-
ophy volume 35, Dordrecht Reidel, Dor-
drecht.

Pereira F.C.N., 1989 'A Calculus for Se-
mantic Composition and Scoping' 27th An-
nual Meeting of A CL 26-29 June 1989 Van-
couver, British Columbia, 152-160.

Tennant N.W., 1978, Natural Logic Edin-
burgh University Press

Woods W.A., 1968, Procedural Semantics
for a Question Answering Machine AFIPS
Natl. Comput. Conf. Ezpo., Conference
Proceedings 33, 457-471.

194

