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1 I n t r o d u c t i o n  

Variations of word order are among the 
most well-known phenomena of natural lan- 
guages. From st well represented sample of 
world languages, Steele[13] shows that about 
76% of languages exhibit significant word 
order variation. In addition to the well- 
known Walpiri(Australian language), several 
languages such as Japanese, Thai, German, 
Hindi, and Finnish also allow considerable 
word order variations. It is widely admit- 
ted that such variations are" governed by 
generalizations that should be expressed by 
the grammars. Generalized Phrase Structure 
Grammar (GPSG)[7] provides a method to 
account for these generalizations by decom- 
posing the grammar rules to Immediate Dom- 
inance(ID) rules and Linear Preeedence(LP) 
rules. Using ID/LP formalism, the flexible 
word order languages can be concisely and 
more easily described. However, designing 
an efficient algorithm to pnt the seperated 
components back in real parsing is a difficult 
problem. 

Given a set of ID/LP rules, one alter- 
native method for parsing is to compile it 
into another grammar description language, 
e.g. Context-Free Grammar(CFG), for which 
there exist some parsing algorithms. How- 
ever, the received object grammar tends to 
be so huge and can slow down the parsing 
time dramatically. Also, the method losts the 
modularity of ID/LP formalism. 

Another set of approaches[ll, 4, 11 tries 

to keep ID and LP rules as they are, with- 
out expanding them out to other formalisms. 
Shieber[ll] has proposed an interesting al- 
gorithm for direct ID/LP parsing by gener- 
alizing Earley's algorithm[6] to use tile con- 
straints of ID/LP rules directly. Despite of 
its possibility of blowing up in the worst 
ease, Barton[3] has shown that Shieber's di- 
rect parsing algorithm usually does have a 
time advantage over the use of Earley's algoo 
rithm oll the expanded CFG. Thus the direct 
parsing strategy is likely to be an appealing 
candidate for parsing with ID/LP rules from 
the computational point of view. 

In this paper, we present a new approach 
to direct ID/LP rules parsing that outper- 
forms the prcvious methods. Besides of the 
direct parsing property, three features con- 
tribute to its efficiency. First, ID rules 
are precompiled to generalized discrimina- 
tion networks[9] to yield compact represen- 
tation of parsing states, hence less compu- 
tation time. Second, LP rules are also pre- 
compiled into a Hasse diagram to minimize 
the time used for order legality cheek at run 
time. And, third, its bottom-up depth-first 
parsing strategy minimizes the work of edge 
check and therefore saves a lot of processing 
time. 

We will first describe briefly each feature 
of our parser. Then, we will show the parsing 
algorithm and an example of parsing. The 
comparisons of our approach with other re- 
lated works are also described. Finally, we 
give a conclusion and our future works. 
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s --*ID a,b,c,d (1) 

s -~x. a ,b ,e , f  (2) 
a,b,c < d (3) 

b < c (4) 
a,e < f (5) 

Figure 1: An example ID/LP grammar : Gl 
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2 . 1  B o t t o m - u p  D e p t h - f i r s t  

S t r a t e g y  

Chart  parsing is one of the most well-known 
and efficient techniques for parsing general 
context-free grammars. The chart serves as 
a book-keeping storage for all parses gener- 
ated while parsing. In general, to avoid re- 
doing the same tasks, the chart has to be 
checked every time a new edge is proposed 
to see whether the identical edge was already 
generated. Also, when an edge is entered into 
the chart, it must be checked with other edges 
to see if it can be merged together to create 
new edges. In practice, these checks can oc- 
cupy the majority of parsing time. 

In order to build an efficient parser, it is ap- 
parent to minimize the checks above. Many 
different strategies of chart parsers has been 
developed. Most of them try to mininfize the 
number of useless edges to reduce the check- 
ing time. 

Our parsing strategy is based on the Word 
Incorporation (VVI) algorithm[12] with some 
modifications to accommodate ID/LP for- 
realism. We follow WI algorithm by restrict- 
ing the parsing strategy to be solely bottom- 
up and depth-first. This makes the parsing 
proceed along the input in an orderly fashion 
(left to right or right to left) and keep pro- 
cessing at a vertex until no more new edges 
ending at the vertex can be generated. Once 
the parsing go beyond a vertex, the process- 
ing will never be redone at tha t  vertex again. 
As a consequence, the duplicated edge check 
can be completely omitted. Moreover, once 

Figure 2: Generalized discrimination network 
representation of ID rules 

a complete edge is used (for creating new ac- 
tive edges), we can delete it out of tile storage 
since it cannot affect other edges anymore. 
This reduces the number of edges and hence 
the checking time. 

2 . 2  G e n e r a l i z e d  D i s c r i m i n a -  

t i o n  N e t w o r k s  a s  I D  r u l e s  

c o m p i l a t i o n  

In conventional chart parsing for context-free 
grammars, a method for reducing the number 
of edges is precompiling the grammars into 
discrimination trees. Assume two CFG rules, 
S ~ ABCD and S ~ ABEF. The RHS of the 
two rules have the common left part AB and 
therefore can be merged together into a single 
combined rule: S ~ AB(CD,EF). In parsing, 
the common part can then be represented by 
a single active edge. 

However, to apply the method to ID/LP 
formalism, the case is different. Suppose 
we have a ID/LP grammar (-;1 as shown in 
Fig. 1. If we view parsing as discrimination 
tree traversal, the parsing has to proceed in 
the fixed order from the root to leaf nodes. 
Because of the order-free characteristic of ID 
rules, we can no longer just  simply combine 
the ID rules (1) and (2) together as for the 
two CFG rules above. 

To achieve the same merit of discrimination 
network in the case of CFG rules, we use gen- 
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erMized discrimination network (GDN) for 
representing ID rules. GDN is a generaliza- 
tion of a discrimination tree that can be tra- 
versed according to the order in which con- 
stralnts are obtained incrementally during the 
analytical process, independently of the order 
of the network's arcs. The technique has been 
first proposed in [9] to be used in incremen- 
tal semantic disambiguation nmdel but its 
characteristic also matches our purpose. The 
technique of GI)N is to assign each node in 
the network a unique identifier and a bit vec- 
tor. For example, the ID rules of Ga, shown 
in Fig. 1 ,can be represented as the discrimi- 
nation network in Fig. 2, of which each node 
is assigned a unique identifier. The leftmost 
digit of an identifier of a node v indicates 
whether the node is a leaf or not, '0' for being 
a leaf and '1' for being a non-leaf. This digit 
is followed by the sequence S(v), which is the 
concatenation of the sequence S(u) and the 
integer k, where u is the immediate predeces- 
sor of v and k is the numerical number of the 
arcs issuing from u. 1 Note that the identifier 
of the root node r has only the first leftmost 
digit(S(r) is null). 

As shown in Fig. 2, to each node identifier, 
we attached a bit vector that has the same 
length as the identifier and consists of l 's  ex- 
cept the leftmost and rightmost bits. These 
identifiers together with their corresponding 
bit vectors play an important role in the pars- 
ing process with GDN, as will be described 
later. 

Note that representing ID rules by GDN 
can combine the common parts of different 
ID rules into the same arcs in the network. 
Shieber's representation, in contrast, consid- 
ers each single ID rule seperately and thus 
cannot achieve this kind of compactness. 

2 . 3  R e p r e s e n t i n g  L P  r u l e s  a s  a 

Hasse diagram 

Hasse diagram is a representation of partially 
ordered set used in graph theory[8]. Since 
a set of LP rules also defines a partially oro 
dered set on a grammar's categories, we can 

1The encoding used here is a little ditfercnt from 
the original ()tie in [9]. 

d f 

Figure 3: Hasse diagram with the precedence 
vector assigned to each node 

constrnct its corresponding Hasse diagram. 
Fig. 3 shows a Hasse diagram for LP rules 
of G1. qb each node we assign a unique flag 
and construct a bit vector by setting the flag 
to '1' and the others to '0'. As for this Hasse 
diagram, we assign 1lag(a) the first bit, flag(b) 
the second bit, . . . ,  and flag(f) the sixth bit. 
The bit vectors of nodes a, b, c, d, e and f are 
then 000001, 000010, 000100, 001000, 010000 
and 100000, respectively. The precedence 
vector of each node is the bitwise disjunction 
between its bit vector and all bit vectors of its 
subordinate nodes. For example, the prece- 
dence vector of f is the disjunction between 
bit vectors of f ,  a and e; 100000 V 000001 V 
010000 = 110001. The resultant precedence 
vectors are shown in Fig. 3 with O's in their 
left parts omitted. 

Using the above technique, the order legal- 
ity check with respect to a given set of LP 
rules can be efficiently done by the algorithm 
below: 

A l g o r i t h m :  C h e c k O r d e r  
Input : Two symbols, A and B with the 

t)recedence vector Prea and Pre~ respec- 
tively, where A precedes B in the input. 

1. 'Fake the bitwise disjunction between 
Pre a and Pren. 

2. Ctieck equality: if the result is equal to 
['rea, fail. Otherwise, return the result 
as the precedence vector of the string 
AB. 
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Note that ,  by the encoding algorithm de- 
scribed in the previous subsection, the prece- 
dence vector of a symbol A that  must precede 
a symbol B always be included in B 's  prece- 
dence vector. As a result, if A comes behind 
B the disjunction of their precedence vectors 
will be equal to B's  precedence vector. The 
above algorithm thus employs this fact to de- 
tect the order violation easily. Moreover, note 
tha t  all LP constraints concerning the sym- 
bols concatenated are propagated with the 
resultant string's precedence vector by the re- 
sult of disjunction. We can then use the al- 
gorithm to check the legality of next input 
symbol with respect to all preceded symbols 
easily by checking with the resultant string's 
precedence vector only. In real implementa- 
tion, we can represent a precedence vector by 
an integer and the order legality can thus be 
checked efficiently by using Boolean bitwise 
operations between integers provided in most 
machines. 

r e d u c e ( a , ( s , l l , l , 0 0 ) ) .  
r e d u c e ( b , ( s , l l l , 1 0 , 0 1 0 ) ) .  
r e d u c e ( c , ( s , l l l l , l l 0 , 0 1 1 0 ) ) .  
r e d u c e ( d , ( s , 0 1 1 1 1 , 1 1 1 1 , 0 1 1 1 0 ) ) .  
r e d u c e ( e , ( s , l l l 2 , 1 0 0 0 0 , 0 1 1 0 ) ) .  
r e d u c e ( f , ( s , O 1 1 2 1 , 1 1 0 0 0 1 , O l l l O ) ) .  

Figure 4: Category-state table generated 
from ID/LP rules : G: 

Next, the constraint-identifier table is re- 
placed by the category-state table, notated 
as reduce(category, state), viewing each cat- 
egory as a constraint. This table will be used 
to reduce a constituent to higher level con- 
stituent state when it is complete. A con- 
stituent is complete if its current state is at 
a leaf node and all bits of B i t V  are set to 0. 
Fig. 4 shows the table derived from G1. 

2.4 Table for ID/LP Parsing 
GDN can cope with any order of input con- 
straints by referring to the table of constraint- 
identifier which is extracted from the network 
by collecting pairs of a branch and its im- 
mediate subordinate node. However, GDN 
has been proposed to handle the completely 
order-free constraint system. In order to ap- 
ply the model to parse natural  language of 
which word order is restricted by some lin- 
ear precedence constraints, some modifica- 
tions have to be done to take those constraints 
into account. 

First, the definition of a state is changed 
from a 2-tuple < Id, B i t V  > to a 4-tuple 
< Cat, Id,  Pre, B i t V  > where each element 
is defined as the following: 

Cat : the mother category of the state; 
Id : the identifier of the state; 
Pre : the precedence vector of the state; 
B i t V  : the bit vector of the state. 

Because we have several networks for all 
nonterminal categories in grammar, Cat is 
added to indicate which networks the state 
belongs to. Moreover, in addition to the ele- 
ments used to check ID rules, the precedence 
vector Pre is added for the check of LP rules. 

3 The Parsing Algor i thm 

Using the table generated from the ID/LP 
grammar, we can parse by the following al- 
gorithm. 

A l g o r i t h m :  P a r s e  
Given a category~state table T generated 

from ID/LP grammar G, a dictionary D , 
a goal category S and an input string w = 
wlw2. .  • w, ,  where wi is a terminal in G, we 
construct the chart as follows: 

k +-- 0; 
wh i l e  k < n do  b e g i n  

1. Look up D for the entry of Wk+ 1, Span 
the inactive(complete) edges correspond- 
ing to every possible category of w~+: be- 
tween vertices k and k + 1. 

Now perform steps (2) and (3) until no 
new edges can be added. 

2. For each inactive edge of category fl 
spanned between vertices j and k+l  ( j  < 
k + 1), if reduce(~3, ¢) is an entry in T, 
span the edge of state ¢ between vertices 
j and k + 1. 
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3. For each active(incomplete) edge of cat- 
egory/3 spanned between vertices j and 
k + 1, search for active edge spanned be- 
tween vertices i and j (i < j).  For each 
one found, perform the check operation 
between the two edges. If this succeeds, 
add the resultant new edge between ver- 
tices i and k + 1. 

4+ k ~ k + l .  

end;  
The input string w is accepted if and only 

if there exists some complete edge of category 
S from vertex 0 to vertex n in the chart. 

Here, the cheek operation between two 
edges(states) includes all of the following op- 
erations: 

o p e r a t i o n  b e t w e e n  Cats : If Catl = Cabe 
then return Cab. Otherwise, fail; 

o p e r a t i o n  b e t w e e n  Ids : Ignoring the left- 
most bit, if Id~ is a prefix-numerical 
string of/+/2, return Id2. Otherwise, fail; 

o p e r a t i o n  b e t w e e n  Pres : As described in 
CheckOrder algorithm; 

o p e r a t i o n  b e t w e e n  BitVs  : After adjust- 
ing the length of BitVs by attaching l ' s  
to the end of the shorter vector, return 
the bit vector of which each bit is a coat- 
junction of the bits of two bit vectors. 

The operation between Cats first checks 
whether the two states are in the same net- 
work. The operation between Ids then checks 
whether one node can be reached front the 
other in the network. The operation between 
Pres tests whether the catenation of the edges 
violates LP constraints and return the prece- 
dence vector of the successful combined edge 
as described in section 4. The operation be- 
tween BitVs allows us to cope with the free 
order of constraints. The bit vector repre: 
sents all the constraints that must be saris- 
fled between the root node and the reached 
node. A bit of 0 and 1 means that the corre- 
sponding constraint is satisfied and unsatis= 
fled, respectively. For example, the bit vector 
'0110' in reduce(e, <s,ll12,10000,0110>) of 
the table in Fig. 4 means that by receiving 

/ :  (s,o1121,11oo11,0oooo) 

i b ~ e ~ a ~ f 

Figure 5: Chart of parsing beaf. 

e as the input, the constraint e is satisfied 
and its corresponding rightnrost bit in the bit 
vector will become '0'. In addition, the two 
l ' s  mean that we can traverse to the node 
with the identitier 1112 but another two con- 
straints, a and b, has to be satisfied before. 
The leftmost bit just makes the vector length 
the same as that of the identifier and has no 
corresponding constraint. By taking the con- 
jltnction of bits of these vectors, bits of tile 
resultant vector are incrementally changed to 
0. Because the bit conjunction operation is 
executable in any order, it is possible to cope 
with an arbitrary order of constraints. 

Note that one may adopt other mechanisms 
used in conventional chart parsing to improve 
the efficiency of the above algorithm. 
E x a m p l e .  Suppose we are given the string 
of categories b,e,a,f to parse, using grammar 
in Fig. 1. First, the edge <s, l l l ,10,010> 
is spanned between vertices 0 and 1, since 
the first element of the string is a b. No 
more iterations of step 2 and 3 are possi- 
ble, so we move on to the next word. Af- 
ter category e is obtained, its corresponding 
state <s,1112,10000,0110> is then operated 
with the state <s,111,10,010>. Operation be- 
tween categories succeeds because both states 
have the same category .~. Operation between 
identifiers I l l  and 1112 succeeds because 111 
is a prefix of l l l 2 ,  thus 1.112 is returned. 
Operation between precedence values 10 and 
10000 also succeeds because the bitwise dis- 
junction of them yields 10010 which is not 
equal to 10. Last, the operation between bit 
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vectors 010 and 0110 returns the result of con- 
junction between 0100 and 0110 which is thus 
0100. So the above operations yield the resul- 
tant  state <s,ll12,10010,0100> as the edge 
spanned between vertices 0 and 2. 

Continuing in this manner, we will get 
<s,ll12,10011,0000> between vertices 0 and 
3, and <s, ll121,110011,00000> between ver- 
tices 0 and 4. Because the latter is a complete 
edge of goal category ~s', the input string is 
thus accepted. The chart is shown in Fig. 5. 

4 Compar i son  w i t h  Re-  
la ted  Works 

Other than  Shieber's work, there are many 
works in the past concerning ID/LP pars- 
ing. Popowich's FIGG[10] treats ID/LP rules 
by compiling them into Discontinuos Gram- 
mar rules. The different approach of top- 
down ID/LP  parsing using logic grammars is 
presented by Abramson[1]. This approach is 
based on using metarules and is attractive in 
tha t  it can be simply added on top of logic 
grammars tha t  are directly available in Pro- 
log. However, the main drawback in using top 
down recursive descent parsing methods is 
tha t  it might result in an infinite loop for left 
recursive grammars. The recent version us- 
ing Static Discontinuity Grammars(SDG)[5] 
augmented with Abramson's  metarules can 
solve this problem by adding loop control 
as a constraint on parsing. According to 
the comparison tests reported in [2], the ap- 
proach appears to be considerably faster than 
Popowich's FIGG. 

Another approach of Bottom-up filter- 
ing strategy[4] at tempts to reduce the non- 
determinism in parsing. Different ID rules 
are constrained to have at most one category 
in common and the knowledge of the leftmost 
constituent is used for phrase level initializa- 
tion. 

As an investigation of our approach, we 
have implemented a small parser, called 
GHW, using SlCStus prolog on a Sun 3-60 
workstation. To reduce spurious parses, the 
parser adopts the technique of the left-corner 
parsing method to detect the edges that  can- 
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not start a constituent in the bottom-up rules 
invoking stage. The technique is similar to 
the one used in [4]. GHW is compared with 
the SDG+metarules and Shieber's parsers 
running on the same environments. In exper- 
imentation, we use a toy grammar taken from 
[2] that  was used to compare SDG+metarules 
approach with FIGG. The grammar contains 
11 ID rules and 4 LP rules. A set of artificial 
sentences whose lengths are ranged from 2 to 
6 is tested on. The timings are averaged over 
100 runs using compiled fastcode and reflect 
the average amount of CPU time in millisec- 
onds required to parse the sentences of sev- 
erai lengths. The result is shown in Fig. 6. 
Because Shieber's and our parser develop all 
parses in parallel and thus the time used to 
find the 1st and M1 parses are about the same, 
only the all parses time is shown. 

Comparing GHW with Shieber's parser, as 
expected, GHW outperforms the other for all 
lengths of the input. When comparing with 
SDG+metarules parser, for short sentences 
SDG+metarules wins over our approach in 
finding the 1st parse, but for longer sentences 
our approach surpasses it in all cases. This 
can be explained that  because our method 
needs to do more works of initialization at 
the beginning of parsing and thus for short 
sentences this cost will affect parse time sig- 
nificantly. However, in the case of longer sen- 
tences the cost will be small compared to 
over all costs and can be neglected. Thus 
our method may be more suited for using in 
reM applications that  concern rather long and 
complicated sentences. However, this exper- 
iment is just  a first step of investigating the 
behaviour of our approach. It remains to be 
seen how the performance will be for a real- 
istic grammar. 

5 Conc lus ion  

A new method for ID/LP rules parsing is 
described. The method improves the per- 
formance of parsing by keeping the parsing 
states set as small as possible, reducing the 
time used by the LP rules checking operation 
and cutting away the overhead of duplicated 
edge checking. These are accomplished by in- 
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total ~8_.~63._1  104:_ ~ 97. [ al0./ 

Figure 6: The  result of contp*trison test  

tegrat ing the. merits  of GDN, l lasse diagram 
and WI algorithm in parsing.The method  is 
shown to be superior to the previous methods  
on the tested grammar.  However, more ex- 
plorat ions have to be done with diverse gram- 
mars and sentences to confirm the effective- 
ness of our method.  This  is left as one of our 
further  works. Also, extending the parser to 
handle ill-formed input  is under investigation. 
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