
"YD/2---A T y p e D e s c r i p t i o n L a n g u a g e
for C o n s t r a i n t - B a s e d G r a m m a r s

Hans-Ulrich Krieger, Ulrich Scldifer
{krieger,schaefer}@dfki.uni-sb.de

(]CITIIIaAt Research (Je, d;cr tbr Artificial lnte, lligcnc(; (I)FI(I)
Stuhlsm;zenhmtsweg 3, 1)-(;(;] 23 S~m'l)rii(:kcn, Gc~ llla,lly

Abstract 2 Motivation

This paper presents "FD~g, a typed feal, ure-bascd rein'c-
sent, el;ion language att(l ild'erence system. Type defini-
tions in TDL consis~ of type and feature constraints over
the Imolean cmme(Mves. TD£ supports open- and closed-
worM reasoning over types and allows for par|;itions and
iueompal;i[)le I.ypes. Working with l)artially as well as
with lhlly expanded types is possible. E[lieienl. reasoning
in "]'1)12 is accomplished through Sl)Ccialized mtMules.
Tot)teal Pat)er . 7t~pie Area : sofl,w;u'e fin" NI,I', gram--
mar ['t)i'midism for Lyl)ed ['e~H.Hi't: st,rut:lures.

1 Introduction

Over l;he last lb.w years, eonsl;raint-based g rammar
tbrmalisms have become the predominmtt t)ar;tdigm
in na tura l language processing ~uld (:oulptltal;iollal
linguistics. Their success stems from tim feet tha t
I ;hey e~LIl b e s e e n a s ;t t t io l toLoI t i (: , highqe.vel r e l) r e s e w -
I;ation language for linguistic knowledge which can be
given tt l)reeise m~d;hetn~d:ical semantics. The mMn
idea of representii~g as much linguistic knowledge as
possit)h~ through a mfique dater type <died fi'atu*'e
s truetur, , Cdlows the inl,egl:,ttion of differenl; des(:l;i 1)
lion levels withoul, taking care of interface probh!lnS.
While the tirst N)l)roaehes relied (m almotate(t I)hrase
sLIJll(:l;lll?e FIl les (e . g . , PAr['[{, • [l) , 1110(1(21711 f o r m a l i s m s
try l,o specify grmnmal, ical knowledge as well as lexi-
con entries entirely through feature, sLruetures, h, or-
der to au:hieve t, his goal, one must enrich the exl)res-
sive power of the lirst imilication-based formMisms
with different forms of disjunctive deseril)tions, l,at-
er, oLher operat ions came int,o play, e.g., (classical)
negation. Ol,her proposals consider the integrat ion of
funcl;ionM/relatiomd del)endencies into t,he [brmMism
which make them in gelleral 'l'uriug-c.omph2te ((e.g.,
AI, I'; [4]). However l,he mosl; impor tan t ext(msion 1;o
['ormalisms eonsisl;s of tire incorporat ion of types, lbl:
instance in modern systems like TI"S [15], CUI e [tl],
or "FD£ [7]. Types are ordered hierm:ehically its it is
known front ol)jeet-oriented t)rogranmdng languages.
This leads l,o mult iple inherit lmee in the description
of linguistic entities. Finally, reeursive types are nee-.
essary 1;o describe at lelust phrase-structure rccursion
which is inherent in all gramnta.r ibrmalisms which
are nol; l)rovidcd with a context-free loaekbone.

ht the next section, we argue for the need and rel-.
evmtce of using types in CL and Nl,l). AO;er that , we
give an overview of 7"1)£ and il,s specialized inl~:rence
modules. EspeeiMly, we have it closer look ()it the
novel features of J'D.~ and ltresenl, the techniques we
h~tve employed in iulltlein(mLing "~1)£,

Mode.rn tylmd mdtieaJ,ion-.ba,sed granunax foruudimns
differ from etMy unt, yped systcnis in tha t they high--
light tile notion o f a fi!ature type. Tyl)es C~L[1 t)e 3,1'-
r a n g e d hierarchically, where a subtype inherits mono-
tonicMly all the in lbrmat ion frolu its supertypes and
unification plays l;he role of the pr imary in%rm~ttion-
coml)imng operation. A tN)e definition elm be seen as
;m M)breviation for ~ (:Oml~lex exl)ressi(m, (:(msisl.ing
of I.ype eonstraiuts (eoncerning the sub-/sup(~rl.yp(:
rehLtionship) ;rod feature constraints (stat,ing the :~1'
propriate M,i;ribut.es and t;he, ir values) over the c(m
ueet.ives A, V, and -,. Types serve its abbrcvi~tfions
Ibr lexicon e, ntries, 11) rule s(:helu;d.;'L, and mfiv(~rsa.I
its well as kmguage-specilic principles as is l'amilinr
Doln I lPSG. Ih~sides using Lyt)cs as an abl)revia|.ion~
[tl l t | (!~ltS ~tS temlthd,es rare, I,}lere a r e o | ,he l ; ~t(lv~ttlliages
as well which cmmot be a(:(;Oml)lished by te.nl)la.i.es:

• STRU(JTUIt . ING KNOWI,b;D(' ,I!;
Types together with the l)ossibility to order
then, hier;u'ehieally allow for a luodul;u" aHd
ele~m way to r,~l)rcs('.nl, lingulsLic kuowle(lge nd
equ~d,ely. Moreow:r, generalizntions can be put,
a.t the apl)l'Ol~ri;d,e h:vels of re.13resenl;atioti.

• I ,~FFI(' IENT I'I{,OCI,'SSIN(I

Certain I,yl)e eonsLrainl ,s (;all I)e (:ompih~d iltl,o el:
ficient represenl,al;ious like. bit veeLors [I], where
a (l[, l / (grcgd;esL h)wer b O U l l d) , L [Jl~, (leaM; Ul)p(~r

I),mnd), or a, ~ (Lyl,e s,d)SUml)liot 0 eOmlml;m, iot~
reduces to low-h'vel bit Inanilmlatio,i ; see Seel,iou
3.2. Moreover, types release mltyt)ed uniliei~tio.
fi'om eXlmnSive COmlmI.M;iou through lhe i)ossi
bility to declare them incoml)al;ilde, lu iuhligi(m,
working with t.yf)e ua.mes only or with partiMly
expanded l;ypes minimizes the costs of copying
sl, ruet;ures during processing. 'Phis can only be
a.ccomplished i[' the sysLent m~ukes at Uleeh;LILiSln
for type exlmnsion available; see Se(:l,ion ;L4.

• T Y P E (J I IECKIN(I
'Fype deliniti(ms allow n gramm~riml to (leelar(~
which a t t r ibutes are al)l)rOl)riate lkq' a given l.yl)e
and which types m:e a.l)prol)riate for a given at..
t r ibute, therelb.'e disallowiug one to write il~(:(m
sistent, feat, m'e structures. Again, type expansioll
is necess;try to determine the glol)M etmsist,eney
of it given description.

• RECIJl tSIVI,] T Y I ' E S
l{ecursive l,ypes give it glmlmnar writ.or the op-
porl.unity to formulnl.e cerl.Mn fimel.ion.s or re--
lations as recm'sivc type specific.;ttions. \York
ing in the type deduel,io|l i)~-tra(ligm el]i'orecs a,
grammar writer 1,o rel)la(:e the eonl;exl;..fl'ee back.

89,3

bone through recursive types. Here, parameter-
ized delayed type expansion is the ticket to the
world of controlled linguistic deduction [13]; see
Section 3.4.

3 TD£

TDZ: is a unificatiol,-based grammar development en-
vironment and run t ime system snpporting HPSG-
like grammars. Work on TD£ has started within the
DISCO project of the DFKI [14] (this volume). The
DISCO grammar currently consists of approx. 900
type specifications written in TD£ and is the largest
HPSG grammar for German [9]. The core engine of
DISCO consists of T/I£ and the feature constraint
solver //D/A~ [3]. ND/~ itself is a powerful untyped
unification machinery which allows the use of dis-
tributed disjunctions, general negation, and fllnction-
al dependencies. The modules communicate through
an interface, and this connection mirrors exactly the
way an abstract typed unification algorithm works:
two typed feature structures can only be unified if
the attached types are definitely compatible. This
is accomplished by the unifier in that ~ handles
over two typed feature structures to TD£ which gives
back a simplified form (plus additional information;
see Fig. 1). The motivation for separating type and
featnre constraints and processing them in special-
ized modules (which again might consist of special-
ized components as is the case in 73)£) is twofold: (i)
this strategy reduces the complexity of tile whole sys-
tem, thus making the architecture clear, and (ii) leads
to a higher performance of the whole system because
every module is designed to cover only a specialized
task.

3.1 TD£ L a n g u a g e

7"D£ supports type definitions consisting of type con-
straints and feature constraints over the operators
A, V, -1, and ® (xor). The operators are general-
ized in that they can connect feature descriptions,
coreference tags (logical variables) as well as types.
77)£ distinguishes between arm types (open-world se-
mantics), sort types (closed-world semantics), built-in
types (being made available by the underlying COM-
MON LISP system), and atoms. Recursive types are
explicitly allowed and handled by a sophisticated lazy
type expansion mechanism.

In asking for the greatest lower bound of two awn
types a and b which share no common subtype, TD£
always returns a A b (open-world reasoning), and not
2_. The reason for assuming this is manifold: (i) par-
tiality of our linguistic knowledge, (ii) approach is
in harmony with terminological (KL-ONE-like) lan-
guages which share a similar semantics, (iii) impor-
tant during incremental grammar/ lexicon construe-
tion (which has been shown usefid in our project),
and (iv) one must not write superfluous type defini-
tions to guarantee successful type unifications during
processing.
The opposite case holds for the C, LB of sort types
(closed-world approach). Furthermore, sort types dif-
fer in another point from avm types in that they arc
not fllrther structured, as is the case for atoIns. More-
over, 779£ oilers the possibility to declare partitions,

a feature heavily used in IfPSG. In addition, one can
declare sets of types as incompatible, meaning that
the conjunction of them yields ± , so that specific avm
types can be closed.

7"D£ allows a grammarian to define and use param-
eterized templates (macros). There exists a special
instance definition facility to ease the writing of lex-
icon entries which differ from nor,hal types in that
they are not entered into the type hierarchy. Input
given to TD£ is parsed by a Zebu-generated LALR(1)
parser [8] to allow for an intuitive, hi9h-level input
syntax and to abstract fi'om uninteresting details im-
posed by the unifier and the underlying Lisp systenr.

The kernel of TD£-. (and of most other monoton-
ic systems) can be given a set-theoretical semantics
Mong the lines of [12]. It is easy to translate TD£.
statements into denotation-preserving expressions of
Smolka's feature logic, thus viewing 7"D£ only as syn-
tactic sugar for a restricted (decidable) subset of first-
order logic. Take for instance the following feature
description O written as an attribute-vMue matrix:

np
[agr'eement]

¢ = A ~ [] NUM sO
PERS 3rd

SUBJ []

It is not hard to rewrite this two-dimensionM de-
scription to a flat first-order formula, where at-
tributes/features (e.g., .~GR) are interpreted as binary
relations and types (e.g., up) as unary predicates:

3~. ,~p(¢) A ,Ga(e,, ~) A ,,a,°~em~,,t(~) A
RUM(x, sg) A PERS(x, o°7"(1) A SUBJ(¢, x)

The corresponding VD£ type definition of ¢ looks as
follows (actually &; is used on the keyboard instead
of A, [instead of V,~instead of ~):

¢ := np A [AGR # x A agreement A [NUll st, PERS at'd],
SUBJ #~].

3.2 T y p e H i e r a r c h y

The type hierarchy is either called directly by the
control machinery of TD£ during the detinition of a
type (type classification) or indirectly via the simpli-
tier both at definition and at run time (type unifica-
tion).

3.2.1 E n c o d i n g M e t h o d

The implementation of the type hierarchy is based
on A'/t-Kaci's encoding technique for partial orders
[1]. Every type t is assigned a code 7(t) (represented
via a bit vector) such that 7(0 reflects tile reflexive
transitive closure of the subsumption relation with
respect to t. Decoding a code c is realized either
by a look-up OFF 3t . 7-1(c) = t) or by computing
the "maximal restriction" of the set of types whose
codes are less than c. l)eper, ding on the encoding
method, the hierarchy occupies O(n logn) (compact
encoding) resp. O(n 2) (transitive closure encoding)
bits. ltere, GLB/LUB operations directly correspond
to bi t-or/and instructions. GI,B, I, UB and ~ com-
putations 1-1ave the nice property that they can be
carried out in this tYamework in O(n), where n is the

894

~] , [...] _>

Q u e r y

{~ 1, [...1
up/ . R e s u l t

~]]A[~

<bl,N> ~ p e h i e r a , r c h y

-<~- - (, tAb)

TZ)£

<{~, ,, A ~, _ q , {yo~, ~o, ~ai~)>

Figure 1: h t t e r f a (' e b e t w e e n "FDE a n d ll/)'&& Depe tMiug on the type hierarchy and the type o f ~ and [~,
TD£. e i ther re turns c (c is de l in i te ly the (;LB o f a and b) or a A b (open-world reasoning) resl). ~L (clo.se<l-world
reasoning 9 i f there doesn ' t ex is t a s ingle type which is ecplal to the G L B of a and b. In addi t ion, 7"DL: de termi tws
whe ther tlDi32: m u s t carry ou t lbature term unif ication (yes) or not (no), i.e., the return t ype contains all the
in format ion one needs to work on prol>erly (f a i l signals a global unif icat ion lhilure).

number of (,ypes. 1

Ai tq (ac i ' s nmthod has been extended in 7'D£ to
cover the ol)en-world nature of avm types in thai; po-
tential (]I ,I~/LUB cmMidates (calculated front their
codes) must be verified. Why so'. e Take the. lbllowing
ex~mrple to see why this is ne.cessary:

a: := J/ A z
x' := y' A z' A [. 1]

l)uring processing, one can definitely subst i tu te y A z
through % I)ut rewriting !I' A z ' to a:' is not correct,
because x' difl'ers fi'om f A z ' - a/ is more speciiic as
a coltseqtlellCX: of the l~e;~ture consl, r~t[llt [tt 1]. So We
make ;~ dist inction between the "internal" gre;~test
lower bound GI ,B4, concerning only the type sub
sumptiot~ relat ion i)y using Ait-Kaci 's method alone
(which is however used for sort types) and the :'ex-
t(,rmq" one, GIA}c , which takes the subsumpt ion re-
lat ion over fi;ature s t ructures into &(:COtlllt.

With Gl,l)-< and GLIJc in mind, we (:m~_ define, a
generalized (~ ,B operat ion infbrmally by the follow-
ing table. This GLI} operation, is actually used during
type mfitication (jr(.' : : feature constraint) :

-di~g- ,Tis,,~-.~oT! ,~fft,~i,u-F_ f,;7-

[_f,'~ _ lLs , ' -~ . [± l - Is-.-- ; . j

?lJh('A'c

a,Jmj < > Gl . l lE (.vmi , a,,m~) -..vm,:~
(IUIIL 1 #,:--~? (ll~?lt I ~ (llHII. 2

I. .L ~-->. C[,I]~ (amnl , arm2) -- J_, via an
explicit incomp~ttibility declara~tion

aural A aline!, otherwise (open world)

~ . . ,,,,,,,,~ < = . exp~md(,,,,,,,,,.~) ni~:~,, ¢ z
_L, otherwise

sor't.~ ¢-=> (] l , I } 5 (sor t t , .sorte) = ~orta
3. so r t t 4;:._~ sort1 == sort2

.L, otherwise (closed worM)

at, o ra l ,~ ~--'.~ type-of(a/oral ,~) ~ sort .& i ,
,1. where sort~,l is ~ built-in

J., otherwise

5 . . atoHtt #,--~ o{oHt I =: (tlont 2
±, otherwise

T 4 ~ > f,:l VI fc~ ¢ _l_
6 . . _L, otherwise

The encoding a lgor i thm is also exl,m,ded towards
the rcdcJiuition o f types and the use o f undcJlmd
types, an essentiM lmrt of at, im:remental gram-
mar / lexicon dew.qopmetd, systenl, ll.edetining a I,ype
means not oldy to m~ke changes local to this type.
h,stead, (.,lie }I:4S to redefil,e all depcndcul.s of this
type - a l l subtypes in case of a conjunctive l;ype def
itdtion and all disjunction al ternatives for at disjuuc-
tive type speeilication plus, in bo th cases, all types
which use these types in their de[inition. The depen-
dent types o[a l.ype t can be characterized gr~q)h-
theoretically via l,he strongly c(mnected component
of t with respect to the depe,Mency relation.

3 . 2 . 2 D (m o l n I) o s i n g T y p e D e f i n i t i o n s

Conjm~ctivc, e.g., x := J/A z ~tnd disju,u;tivc t!lp('.
specificalio)~s, e.g., a/ ::-= f V z / are entered difl'er-
ently into the hier~u'chy: :c inherits from its s,,per-
l;ypes 9 and z, whereas x' delines i tse|f through its

IActuMly, one can choose, in 7"DE I)ctwccn the two
encoding I:cchniques and between bit vectors and bignums
ill COMMON [ASP for the representatiou of the codes, h,
our I,l.ql' implelnentaLion: operatimm on bignulns are. a
magtfil;ude faster than on bi~ vectors.

8 9 5

\ J

z l u A v A w l

y

Figure 2: The intermediate types luAH and NAvAwl
are introduced by TD£ during the type delinitions
,= := uA' , , A [a 0] and Y := wA v A , * A [a 1].

alternatives !/ and z'. This distinction is represent-
ed through tile use of different kinds of edges in the
type graph (bold edges denote disjunction elements;
see Fig. 3). But; it is worth noting that both of tllem
express subsumption (x ~ y and x' >-_ y') and that
the GLB/LUB operations must work properly over
"conjunctive" as well as "disjunctive" subsumption
links.

TD£ decomposes complex definitions consisting of
A, V, and ~ by introducing intermediate types, so
that the resulting expression is either a pure covjunc-
lion or" a disjunction of type symbols. Intermediate
type names are enclosed in vertical bars (ef. the in-
termediate types [u A v I and lu A v A w{ in Fig. 2).

Tile same technique is applied when using • (see
Fig. 3). (b will be decomposed into A, V and ~, plus
additional intermediates. For each negated tyt)e ~t,
7"1)£ introduces a new intermediate type symbol I-'tl
having the definition ~t and dechu'es it incompatible
with t (see Section 3.2.a). I,~ addition, if t is not
already present, T/)£ will add t as a new type to the
hierarchy (see types [~b[allcl]-el in Fig. 3).

Let's consider the example a := b ® c. The de-
composition can be stated informally by the follow-
ing rewrite steps (assuming that the user tu~s chosen
CNF):

a := b O c

. := (~ A -~(-) v (-~ A c)
. : = (b v -~b) A (b v c) A (-~ V ~) A (-,e V e)

,, : = (~ v e) A (~ v ~)

. : = I~vel A I~bWel

3.2.3 Incompat ib le Types and Bot tom
Propagation

Incompatible lypes lead to the introduction of spe-
cialized bottom symbols (see Fig. 3 and 4) which how-
ever are identified in the underlying logic in that they
denote the empty set. These bottom symbols must be
propagated downwards by a mechanism called bottom
propagation which takes place at definition time (see
Fig. 4). Note that it is important to take not only
subtypes of incompatible types into account but also
disjunction elements as the following example shows:

T

-k(b, ~b] J-{e,~c}

Figure 3: Decomposing a := b®c, such that a inherits
from tile intermediates IbVc[and b / , v~c l .

.k -- a A b. } _~C+ a A bi := J- and a A b~ = J_
b := bl V b.).

One might expect; that incompatibility statements
together with feature term unification no longer lead
to a monotonic, set-theoretical semantics. But this
is not the case. To preserve monotonicity, one must
assume a 2-level interpretation of tgpcd feature struc-
tures, where feature constraints and t, ype constraints
might denote diflb.rent sets of objects and the glob~
al interpretation is determined by the intersection of
the two sets. Take for instance the type definitions
A := [a 1] and 13 := [b 1], plus the user declaration
J- = A A B, meaning that A and B are incompatible.
Tl,en A A B will simplify to J_ although the corre-
sponding feature structures of A and [t successfully
unify to [a 1, b 1], thus the global interpretation is ±.

3.3 S y m b o l i c S i m p l i f i e r

[File simplifier operates on arbitrary TD~ expressions.
Simplitication is done at definition time and at run
time when typed unification takes place (cf.]rig. 1).
The main issue of symbolic simplitication is to avoid
(i) unnecessary feature constraint unification and (it)
queries to the type hierarchy by simply applying
"syntactic" reduction rules. Consider all expression
like x~ A . . . A xi . . . A " ~ a : i , . . A xn. The shnplilier will
detect .k by simply applying reduction rules.

The simplification schemata are well known from
the propositional calculus. They are hard-wired in
the implementation to speed up computation. For-
really, type simplitication in "FD£ can be character-
ized as a term rewriting system. A set of reduction
rnles is applied until a normal form is reached. Con-
fluence and termination is guaranteed by imposing
a total generalized lexicwraphic order on terms (see
below). In addition, this order has the nice effects
of neglecting eommutat ivi ty (which is expensiw.' and
might lead to termination problems): there is only
one representative lbr a given formula. Therefore,
memoizatiou is cheap and is employed in TD£ to
reuse precomputed results of simplilied expressions
(one must not cover all permutations of a formula).
Additional reduction rules are applied at run time
using "semantic" inlbrmation of the type hierarchy
(GLB, LUB, and ~).

8 9 6

[l -

d ',:: b A [p t'].

< : : : b A [p --].

. t , - - - + <, / / ~ . c

.l-{a,b>,:} I-{a,b,c}

Iqgure d: IJot tom propagat, icm trigg'ered throltg'h the :mbEglWS d aud c o f b, ,so f, ha.L a A d A c as well w; a A ,.: A c
will simI>lil ~ to _L dur ing processing.

a . a . 1 N o r n i a l F o r l l i

hi order to reduce ;ui m;1)il;rary l,yl m express ion to
it s impler express ion, Siml)lifi(:al;ion rules inusl; I)e a])-
plied. So we have to del ine wh;Ll, it, lfie0Al.q for &ll
e x p r e s s i o l l t() t)(; "SJ l l l l l l e ' . Ollo, CilJl eil;he, r (:boo,q(; t h e
coujimcl,ivc or disjuimt, ive nol:maJ tbrm. T h e ~tdwtlr-
I, a gcs of CN I" / I)NF are:

i UNIQIIF, NES,q
<l'yl)e ('.XlJl:ossiolls ill llOl'lll~t[[O1"111 ttl;C IllliqllO,
n iodu lo (;onunutal; ivi l ,y. Sorl, ing l,yllc extJressions
according t,o ~ t;oi,;d lexi(Jographic order will lead
i;o a i:otM u i l i q u e n e s s o f l ,yl)e e x l l i : e s s i o n s (,<-;ee,
Section 3.3.3).

• LINEAI{I'FY
' ['ype express ions in l iOi' l l lal ['orll l ;~i:e l inear. Ar
bi l ; r ; t ly l lesl .ed expl:essi() i is c:itii l ie 1,ra.nsfortxied
inl,o l la l (JXl)i'OS,'-;iOllS. T h i s l[l;,ty l'(',dlil;(? i ,he COHI
plexi l ,y of later s in ip l i l i ca t ious, e,g;., ;d; r l l i l t ime.

• (J t) M l ' a I t A B I I , 1 T Y

T h i s l) rope r i , y is a colls(xlll(;lt(:(! o f t h e t w o oi;hel;
proli(;l:tie,<;. (~'ni(lue aal(I line,u: exl)ressions lnake
it; easy i,o l i i ld O1" 1,() cOUllm,'e (sul))expl:essions.
Th is is itll l)Ort, allt, [or the l i ierl loiz~d;iol i lx;t:hli ique
descr ibed in Scct ioi i 3.3.4.

3 .3 .2 l l , e d u c t i o n Rnl(~s

lu order to reach a n o r m a l forui, it; would suffice
to at)l)ly only the s(:ll.etlt;t|;;~ ['or (lf)ll})[(~ neg~l,ion, dis-
I,ribul, ivity, and De Morgan ' s h~ws. Ilowever, in the
worst case, t, hcsc I, hr('(; rtlles wouht blow iI t) i,he leugl;h
of th(~ n o r m a l lb rm to eXl)OnCnl,ial size ((:omp~u'ed
wi th],he mtull)er o[lit, erals iu the originaJ expres-
sion). To ~o,'oi(l I, his, ()(;her titles ;tr(' use(I in te rmedi -
ately: i dempotcnce , idenl, ity, al)sorpl,ioih etc. If they
can l)e appl ied, t, he.y alw~tys re(tilt:t; l,he lengl,h of I,hc
expressions, l']specia.lly w[; run l, ime, llu(; also al; del L
]nil;ion t i lne, i[, is use['ul to eXldOi[, infbrmM, i(m ['rt)ln
the, t,ype hi(warchy. I"url,h(:r siml)lilit:al, ious are l)ossi-
hie by ~csking lbr l,h(; (: l l , l t ,] , t i l l , altd ~.

3 .3 .3 L c ' x l c o g r a l) h i c O r d e r

To avoid the al)pl i('a t ion of l;ltc co tmnuta t iv i l , y rule,
wc introduc(~ ;~ to(,al lcx icographic order on tyllc cx-
lU'essious. Toge the r wi th I)NF/(TNI, ' , we ol)taiil a
unique sorl;ed n o r m a l fornt tbr an a rb i t r a ry l;y[)e ex-
pression. Th i s guarant ,ees fast (:oinparabilil,y.

We define I;he order <NF on 7>ary norma l forms:
t~,lpe <N~; neqaled type <NI; con junc t ion <NI,' dis,-
,]'?trtCti01~ <NI" symbol <NI" s tr iu9 < N F ~lltll21J(~F. l"ot'
the coinl)arisoil of a toms , st;rings, and type names ,
we use the lexic, ographica l order on s t r ings ;rod lbr
llitlllt)(!l:S [,h(~ order ing < ou n ; t tu ra l IIIIlH[)OI'S.

l",x;unple: a <NI; b <NI; bb <NI; -m(t <NI; c.z A b <NI,'

a A - ,a <NI; a V b <NJ" (t V b V c <NI; a V i

:1 .3 .4 M e m o i z a l f i o i t

T h e m e m o i z a t i o n t, cchnique describe, d in [10] hw-;
1)een ad;q)ted in order to reuse precomlml,ed resull;s o]'
l.ype sinq)li[i<:at,ion. T h e lexicogral>hically sor ted nor-
lnM f¢)rni guar ;ui tees fast; ~u:cess 1;o lU:CCOlnlml;e(l l,ype
sinll) l i l ications. Memoiza | ; ion resull, s are also used by
the recursive simplific;d;ion algori t ;hm (;o exploit, pre-
con l lmted resul ts for subexln:cssions.

Some enqfir ical resul ts show I;he usefulness of nteui-
oizat ion, T h e cu r ren t DISCO grallltlUtr]'t)r Q',0r-
lI|~l,ll co118i81,8 o]' 88 F) types ;uld 27 tentl~latx:s. AI:
ter a lull (,ylm expaus ion of a toy lexicon of 244 i n
s(,;tltces/elll, ries, the lnemoiz;tl, ion tab le txmtaium ap-
prox. 3000 cnl;ries (l i terals m'c noL lneuloized) . 18000
resul ts have been reused ~tt; lc'asl; once (some up t;(~
600 t i ines) of whMl 90 % ~re proper sinlplilica(,ions
(i.e., the si inpli l icd formulae m:e real ly shor te r th~m
t, he uns impl i l ied ones).

3 . 4 T y p e E x l m n s i o n a n d C o n t r o l

Wc no ted earl ier I, h a t types allow us to refer to c(m,--
pIex cons t r a in t s folirougli t im use o[symbol nantes .
l/,ecolml, rucl, ing |,he consl, r;tinl,s which de te rmi lm a
I,ype (rept:eseltted as a ['eature sl,rucl;ure) requires a
complex ol)er;-ttion called Qjpc c,7,Tmusz'om Thi s is
COml);tr;tble to (Jat 'lmnl;er's lolalhj wcll-l~jpcdncss [5].

3 . 4 . 1 M o t i v a t i o n

In ~J'l)l~, I,he mot, iwttioll for type expans ion is m;m-
iibl(l:

• CONSISTI,;NCY
AI, def ini t ion t ime, type expans ion del,ermiues
whc| ;her tim st:l, of |,ype delinil;ion,s (g r a m m a r and
lexicon) is consis tent . At; run t ime, t, ype exi);m-
sion is involved in checking the satis[i;d)ili ty of
l;he unilical;ion of two part,]ally explm(h.'d typed
fe;d,ure s(;rucl, lures, e.g., du r ing parsing.

897

• ECONOMY
From the s tandpoin t of efficiency, it; does make
sense to work only with small, part ial ly expand-
ed structures (if possible) to speed up feature
term unification and to reduce the antount of
copying. At the end of processing however, one
has to snake the resul t /const ra in ts explicit.

• ItECURSION
l{ecursive types are inherently present in modern
constraint-based granmlar theories like IIPSG
which are not provided with a context-free back-
bone. Moreover, if the formalism does not al-
low fnnctionM or relational constraints, one tnust
specify certain f lmct ions/rela t ions like append
through recurslve types. Take for instance Ait-
Kaci 's version of the append type which (:ass be
s ta ted in "]-DE as follows:

append := appendo V appendl.
aN)endo := [FRONT < >,

BACK # 1 A list,
WHOLE #1] .

append, := [FRONT < #first. #~v.stl >,
BACK #back A list,
WHOLE < #first. #rest2 >,
PATCH append A [FRONT #rest l ,

BACK #back,
WHOLE #rest2]].

o TYPE DEDUCTION
Parsing and generation can be seen in the light of
type deduction as a uniforin process, where ideal-
ly only the phonology (for parsing) or the seman-
tics (for generation) must be giw'.n. Type expan-
sion together with a sufficiently specified gram-
mar then is responsible in both cases for cov-
s t rnct ing a fully specified feature s t ructure which
is maximal informative and compatible with the
input. Itowever, [la] has shown tha t type ex-
pansion wi thout sophist ieated control strategies
is in Illany cases inelficient and moreover does
not guarantee terminat ion.

3.4.2 C o n t r o l l e d Type. E x l i a n s i o n

Uszkoreit [la] introduced a new strategy tbr lin-
guistic processing called controlled linguistic deduc-
lion. Ills approaeh permits the.specit icat ion of lit>
gnistic performance models wi thout giving up the
declarative basis of linguistie competence, especial-
ly monotonic i ty and eompleteness. The ewduation of
bo th cm0nnct ive and disjunctive constraints can be
controlled in this framework. For conjunctive con-
straints, the one with the highest faihtre probabil i ty
should be evahtated first. For disjunctive ones, a suc-
cess measure is used instead: the al ternat ive with the
highest success probabi l i ty is used until a unification
fails, in which case one has to backtrack to the next
best al ternative.

7'D£ and /./D~de snppor t this strategy in tha t ev-
ery feature s t ructnre can be associated with its sue-
cess/faihtre potentiM such tha t type expansion can be
sensitive to these settings. Moreover, one can make
other decisions as well during type expansion:

• only regard s t ructures which a r t subsumed by a
given type resp. the opposite case (e.g., expand
the type subcat-list always or never expand the
type daughters)

• take into &ccouttt only structures under cer-
ta in paths or again assume the oliposite case
(e.g., always expand the wtlue nailer pa th
SYNSEMILOCICAT; in addit ion, it is possible to
employ path pa t ten l s in the sense of pa t tern
matching)

• set the depth of type expansion for a given type

Note tha t we are not restricted to apply only one
of these sett ings-- they can be used in combinat ion
and can be changed dynamical ly during processing.
It does make sense, tbr instance, to expand at cer-
tain well-defined points during parsing the (partial)
information obtained so far. If this will not resnlt in a
failure, one can throw away (resp. store) this flflly ex-
panded feature structure, working on with the older
(and smaller) one. tlowever, if the information is in-
consistent, we luust backtrack to older stages in com-
putat ion. Going this way which of course assumes
/seuristic knowledge (language as well as g rammar-
specific knowledge) results in faster processing and
copying. Moreover, the inference engine lllnst be able
to handle possibly illconsistenl, knowledge, e.g., in
cast of a chart parser to allow for a third kind of
edge (besides active and passive ones).

3.4.3 R e e m ' s i w ; T y p e s , h n p l e n m n t a t i o n a l
I s sues , a n d U n d e e i d a b i l l t y

The set of all recursive types of a given gram-
mar / lex icon can be precompiled by employing the
dependency graph of this type system. This graph
is updated every t ime a new type delhfition is added
to the system. Thus detecting whether a given type
is recnrsive or not reduces to a simple table look--up.
ltowever l, he expansion of a recnrsive type itself is a
little bit harder. In T'D£, we are using a lazy expan-
sion technique whMt only makes those constraints
explicit which are really new. To pslt it in anoth-.
er way: if no (global or local) control information
is specified to guide a specific expansion, a recnrsive
type will be be expanded under all its paths (local
plus inheri ted paths) until one reaches a point where
the information is already given in a prcJi:r path. We
call such an expanded s t ructure a resolved typeil t?~.a -
ture structure. Of course, there are inlinitely many
resolved feature structures, but this s tructure is the
most general resolved one.

Take lbr instance the append example l¥om the
1)revions section, append is of course a recursive
type because one of its al ternatives, viz., append 1
uses append under the PATCH attr i lmte. Exl)and-
ing append with no addi t ional information sup-
plied (especiMly no path leading inside appcndl,
e.g., PATCH I PATCH I PATCH) yields a disjunctive feature
s t ructure where bo th append o and append I are sub-
s t i tuted by their definitiorl. The expansion then stops
if no other informatioll enforce a fisrther expansion.

In practice, one has to keep track of the visited
paths and visited typeil feature s tructures to avoid
unnecessary expansion. 3'0 make expansion more el L
ficient, we mark structures whether they are fully ex-
panded or not. A feature s t rnetnre is then fully ex-
panded iff all of its substructures are fully expanded.
This simple idea leads to a massive reduction of the
search space when dealing wills incremental expan-
sion (e.g., during parsing).

898

It is worth noting that the sat|st|ability of fea-
ture descr ip t ions a d m i t t i n g recursive type equa-
t i o n s / d e t i n i t i o n s is in general undecidable . Rounds
and Manas ter - l l , aumr [11] were the t irst hav ing shown
t h a t a t (asper - l l .ounds logic enr iched wi th recnrsive
types allows one to encode it Tu r ing machine , l ie-
cause our logic is much more richer, we imlne(l ia te ly
get; the sanle resul t tbr TD£.

i towever , one can choose in 7"l)£ be tween a com-
plete expans ion a l g o r i t h m which m a y not t e r n i i n a t e
and a non-comf) le te on(.' to g u a r a n t e e tcrmin~-ttion (see
[2] and [5, Ch. 1,5] for s imi la r prol ,osals). T h e la t te r
ease heavi ly depends on the no t ion of resolvedness
(see above) . In b o t h cases, the d e p t h of the search
space can be res t r i c ted by specifying a m a x i m a l p a t h
length.

4 C o m p a r i s o n w i t h o t h e r S y s t e m s

7'D/~ is tmique in t h a t it iml) l emevts m a n y novel fea-
tures no t found in o the r sys tems like A L E [4], I,IFI';
[2], (7,: TIeS [15]. Of course, these sys tems l ,rovide
o the r l~atures whiclt are no t present in our formal-
| s in . W h a t makes 7,D£ unique in COmlTarison to t h e m
is the d i s t i nc t i on open vs. closed world, the awdlabi l -
ity of the full boo lean connec t ives and d i s t r i bu t ed
d i s junc t ions (v ia U D / ~) , as well as an imphmte , l ted
lazy type expans ion mecha i f i sm for reeursive types
(as c o m p a r e d wi th LIFE) . AI,E, [br ins tance , ne i ther
allows d i s | m i n t | r e nor r ecu r s | r e tyl)es and enforces
the l;ype h ie ra rchy to be a I?,CPO. IIowever, il; makes
recurs ion avai lable througl , det ini te re la t ions and in-
co rpora tes special m e c h a n i s m s [br eml) ty categories
and lexical rules. T F S comes up wi th a closed worhl,
the unawdlab i l i t y of nega t ive i n f o r m a t i o n (only im-
pl ici t ly present) and only a poor t b rm of d i s junc t ive
i n f o r m a t i o n bu t pe r fo rms pars ing and genera t ion en-
t i rely t h r o u g h type deduc t ion (in fact, it was the t irst
sys tem) . LIF'I'3 comes closest to us bu t l)rovides a se-
man t i c s for types t h a t is s imi la r to TFS . Moreover
the lack of nega t ive i n f o r m a t i o n and d i s t r ibu ted dis-
j u n c t i o n s makes it aga in compara l) le wi th TFS. L I F F
as a whole can be seen as an ex tens ion of PROI,O(~ (as
was the case for its predecessor LO('HN), where tirst-
order t e rms are rel)laced by .~-terms. In th is sense,
I,IFF, is rMmr t h a n onr foma l i sm in t h a t it offers a
fifll r e la t iona l calculus.

5 S u m m a r y a n d O u t l o o k

In this pal)er , we have presen ted 7,D£, a typed tha-
ture for lnMism thg~t in t eg ra tes a |)owerflfl fea ture con-
s t rMnt solver and type sys tem. 13oth of t] tem provide
the boo lean connec t ives A, V, and ~, where a con>
l)lex exl)ression is decomposed by emphTying in te rme-
d ia t e types. Moreover , recurs ive types are suppo r t ed
as well. lit 7,D/2, a g r a m m a r wri ter decides whe the r
types liw. ~ in an open or a closed world. Th i s ef-
fe.cts (]L t l and LIJI] c o m p u t a t i o n s . ' | ' he type sys tem
i~,self consis ts of several inference com ponen t s , each
designed to cover etficiently a specific task: (i) a tilt
vector encod ing o[the hierarchy, (ii) a fas t symbol ic
s impli l ier for com p lex type expressions, (iii) m e m o
iza t ion t;(7 cache preeomI)uted results , and (iv) a so-
ph i s t i ca ted type expans ion n m c h a n i s m . The sys t em

as descr ibed in this paper has been i m p l e m e n t e d in
COMMON IASP and in teg ra ted in tile I) ISCO environ-
m e n | [14].

T h e next lll;kjor version of 7,D£ will be in tegra t -
ed into a dec la ra t ive sl)ecil ication langt tage which al-
lows l inguis ts to define eoutrol kuowledge t h a t can be
nsed du r ing proe~.'ssing. In add i t ion , ce r ta in forms of
know|edge, c o m p i l a t i o n will be m a d e availa/fle in fu-
ture versions o[' TD/~, e.g., the a u t o l n a t i c de tec t ion o['
syn tac t i c ineonq)a t ib i l i t i es be tween tyl)es , so t h a t a

type eOmlmta t ion can subsl , i tute an extens ive fea ture
t e rm unif icat ion.

R e [' e r e n c e s

[1] l lassan Ai't-Kaci, Robert lloye.r, Pa(a'ick Lincoln, ~-tlld
t{oger Nasr. I*;flieient; implementat ion of lattice op
erations. ACM Transactions ou l'rogrammin 9 Lan-
(lUages aud Sgstcms, 11 (1.):115- 146, January 1989.

[2] IIassan M'l,-Kaci, Andreas Podelski, and Seth Copen
Goldstein. Ovder-sort, ed R:aLure timory uni[icaLion.
Teclm. Hcport 32,])EC Paris l/.esem'ch | , lb . , tg.')a.

[3] Rolf]~a(:kofcll and Cln'ist;oph Weyers. UDi/g'c a fca-
|.life t:onst, raint solver with distributed disiunction
and classical negation. Teclmical report., D ["K [, Sct[tt'-
brficken, (]ermmty, 1!/9-1. Forthconting.

[4] Bob Carpenter. ALE |;he al;tribu(:e logic engine us-
er's guide. Version ft. Technical report., Labm'atoty
for Computal;iona[l,inguisl;ics. Carnegie Mellou Uni-
versity, Pit(.sburgh, PA, 1992.

[5] Bob Carpenter. The Logic of ~lilped Feature Struc-
tm'cs. Cambridge University Press, Cmnbridge, 19!)2.

[6] .lochen l)Srre and Michael Dovna. CUF .a formal-
ism for lhtguisi, ic knowledge representation. In
£1 ' l) ~ ~lt'{~ , editor, Comp.utational Aspects cff Cou-
straint- B,sed Linguistic Description. DYANA, 1!)9:L

[7] l lans-UMch Krieger and Ulrich Sch'ffer. "['1)£. -a
type description language for HPSG. Pm't 2: user
guide. Technical report, DFKI, Saarbrlleken, (k't'-
many, 19!)-1. Forthcoming.

[8] Joachiln l~aul)sch. Zebu: A tool for speeifyil~g r c
versible] ,ALR(I) parsers. '] 'ethnical re.porl;, IIewleM;-
Packard, 1993.

[9] Klaus Netter. Ar(:|dteci;m'e and coverage of |;he 1)[,%.
CO grammar. In S. Busemamt aim K. IIarbusch,
eds., t'roc, of the DFKI Workshop on N , tural Lau-
9tu,/e Systems: Modularity and ltc- Usability~ 1993.

[10] Peter Norvig. Techniques fin' mttomal:ic memoizai;ion
with applications t;o (:oul;ex|;-ft'ee pro'sing. Computa-
tional Linguistics, 17(1):91--98, 1991.

[11] William C.]{O/llttls and Alexis Mg.tli.~tsl;tw-l{~-ttllel'. A
logical version of fimctional gr;unmsu'. In Procccdi,,qs
of the A UL, pages 89 4)6, 1987.

[t2] GerL Smolka. A feature logic with subsorl;s. I,II,O(',
l/.eporL 33, IBM (;ermany, Sl;ut.tgart, 1988.

[13] l lans Uszkoreit. Strat;cgies for adding control infof
lint|ion (.o declarative gr;munars, in l'roccediuya of
the ACL, l)agcs 237 245, 1991.

[14] H. Uszkoreit., R. Backofen, S. lhlsemann, A.K. l)i
agne, E.A. Ilinkehnan, W. Kasper, B. Kiefcr, t[.-
/j. KT"ieger, K. Netter, G. Neummm, S. Oel)en , and
S.[). Sl)ackman. DISCO- an HPSC;-bas(:d NI,P sys.-
tern aim il;s app|h:al;ion for aplmintlnent uchedulhlg.
In Proceediuqs of COLING, 1994.

[15] Hdmi Zajac. Inheritance and constraint-bas('.d
grammar formal|sins. Computational Linguistics,
J8(2): tat) ~82, 1,,),,)2.

899

