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Abstract 2 Motivation 

This paper presents "FD~g, a typed feal, ure-bascd rein'c- 
sent, el;ion language att(l ild'erence system. Type defini- 
tions in TDL consis~ of type and feature constraints over 
the Imolean cmme(Mves. TD£ supports open- and closed- 
worM reasoning over types and allows for par|;itions and 
iueompal;i[)le I.ypes. Working with l)artially as well as 
with lhlly expanded types is possible. E[lieienl. reasoning 
in "]'1)12 is accomplished through Sl)Ccialized mtMules. 
Tot)teal Pat)er .  7t~pie Area :  sofl,w;u'e fin" NI,I', gram-- 
mar ['t)i'midism for Lyl)ed ['e~H.Hi't: st,rut:lures. 

1 Introduction 

Over l;he last lb.w years, eonsl;raint-based g rammar  
tbrmalisms have become the predominmtt  t)ar;tdigm 
in na tura l  language processing ~uld (:oulptltal;iollal 
linguistics. Their  success stems from tim feet tha t  
I ;hey  e~LIl b e  s e e n  a s  ;t t t io l toLoI t i ( : ,  highqe.vel r e l ) r e s e w -  
I;ation language for linguistic knowledge which can be 
given tt l)reeise m~d;hetn~d:ical semantics.  The mMn 
idea of representii~g as much linguistic knowledge as 
possit)h~ through a mfique dater type <died fi'atu*'e 
s truetur, ,  Cdlows the inl,egl:,ttion of differenl; des(:l;i 1) 
lion levels withoul, taking care of interface probh!lnS. 
While the tirst N)l)roaehes relied (m almotate(t I)hrase 
sLIJll(:l;lll?e FIl les ( e . g . ,  PAr[ '[{,  • [ l ) ,  1110(1(21711 f o r m a l i s m s  
try l,o specify grmnmal,  ical knowledge as well as lexi- 
con entries entirely through feature, sLruetures, h, or- 
der to au:hieve t, his goal, one must  enrich the exl)res- 
sive power of  the lirst imilication-based formMisms 
with different forms of disjunctive deseril)tions, l,at- 
er, oLher operat ions came int,o play, e.g., (classical) 
negation. Ol,her proposals consider the integrat ion of 
funcl;ionM/relatiomd del)endencies into t,he [brmMism 
which make them in gelleral 'l'uriug-c.omph2te ((e.g., 
AI, I'; [4]). However l,he mosl; impor tan t  ext(msion 1;o 
['ormalisms eonsisl;s of tire incorporat ion of types, lbl: 
instance in modern  systems like TI"S [15], CUI e [tl], 
or "FD£ [7]. Types are ordered hierm:ehically its it is 
known front ol)jeet-oriented t)rogranmdng languages. 
This  leads l,o mult iple inherit lmee in the description 
of linguistic entities. Finally, reeursive types are nee-. 
essary 1;o describe at lelust phrase-structure rccursion 
which is inherent  in all gramnta.r ibrmalisms which 
are nol; l)rovidcd with a context-free loaekbone. 

ht the next section, we argue for the need and rel-. 
evmtce of using types in CL and Nl,l ). AO;er that ,  we 
give an overview of  7"1)£ and il,s specialized inl~:rence 
modules. EspeeiMly, we have it closer look ()it the 
novel features of J'D.~ and ltresenl, the techniques we 
h~tve employed in iulltlein(mLing "~1)£, 

Mode.rn tylmd mdtieaJ,ion-.ba,sed granunax foruudimns 
differ from etMy unt, yped systcnis in tha t  they high-- 
light tile notion o f  a fi!ature type. Tyl)es C~L[1 t)e 3,1'- 
r a n g e d  hierarchically, where a subtype inherits mono- 
tonicMly all the in lbrmat ion frolu its supertypes and 
unification plays l;he role of the pr imary in%rm~ttion- 
coml)imng operation.  A tN)e definition elm be seen as 
;m M)breviation for ~ (:Oml~lex exl)ressi(m, (:(msisl.ing 
of I.ype eonstraiuts  (eoncerning the sub-/sup(~rl.yp(: 
rehLtionship) ;rod feature constraints  (stat,ing the :~1' 
propriate M,i;ribut.es and t;he, ir values) over the c(m 
ueet.ives A, V, and -,. Types serve its abbrcvi~tfions 
Ibr lexicon e, ntries, 11) rule s(:helu;d.;'L, and mfiv(~rsa.I 
its well as kmguage-specilic principles as is l'amilinr 
Doln I lPSG. Ih~sides using Lyt)cs as an abl)revia|.ion~ 
[tl l t | (!~ltS ~tS temlthd,es rare, I,}lere a r e  o | ,he l ;  ~t(lv~ttlliages 
as well which cmmot be a(:(;Oml)lished by te.nl)la.i.es: 

• STRU(JTUIt . ING KNOWI,b;D(' ,I!;  
Types together with the l)ossibility to order 
then, hier;u'ehieally allow for a luodul;u" aHd 
ele~m way to r,~l)rcs('.nl, lingulsLic kuowle(lge nd 
equ~d,ely. Moreow:r, generalizntions can be put, 
a.t the apl)l'Ol~ri;d,e h:vels of re.13resenl;atioti. 

• I ,~FFI( ' IENT I'I{,OCI,'SSIN(I 

Certain I,yl)e eonsLrainl ,s  (;all I)e (:ompih~d iltl,o el: 
ficient represenl,al;ious like. bit veeLors [I], where 
a ( l[ , l /  (grcgd;esL h)wer b O U l l d ) ,  L [Jl~, ( leaM; Ul)p(~r 

I),mnd), or a, ~ (Lyl,e s,d)SUml)liot 0 eOmlml;m, iot~ 
reduces to low-h'vel bit  Inanilmlatio,i  ; see Seel,iou 
3.2. Moreover, types release mltyt)ed uniliei~tio. 
fi'om eXlmnSive COmlmI.M;iou through lhe i)ossi 
bility to declare them incoml)al;ilde, lu iuhligi(m, 
working with t.yf)e ua.mes only or with partiMly 
expanded l;ypes minimizes the costs of copying 
sl, ruet;ures during processing. 'Phis can only be 
a.ccomplished i[' the sysLent m~ukes at Uleeh;LILiSln 
for type exlmnsion available; see Se(:l,ion ;L4. 

• T Y P E  (J I IECKIN(I  
'Fype deliniti(ms allow n gramm~riml to (leelar(~ 
which a t t r ibutes  are al)l)rOl)riate lkq' a given l.yl)e 
and which types m:e a.l)prol)riate for a given at.. 
t r ibute,  therelb.'e disallowiug one to write il~(:(m 
sistent, feat, m'e structures. Again, type expansioll 
is necess;try to determine the glol)M etmsist,eney 
of it given description. 

• RECIJl tSIVI,]  T Y I ' E S  
l{ecursive l,ypes give it glmlmnar writ.or the op- 
porl.unity to formulnl.e cerl.Mn fimel.ion.s or re-- 
lations as recm'sivc type specific.;ttions. \York 
ing in the type deduel,io|l i)~-tra(ligm el]i'orecs a, 
grammar  writer 1,o rel)la(:e the eonl;exl;..fl'ee back. 
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bone through recursive types. Here, parameter- 
ized delayed type expansion is the ticket to the 
world of controlled linguistic deduction [13]; see 
Section 3.4. 

3 TD£ 

TDZ: is a unificatiol,-based grammar development en- 
vironment and run t ime system snpporting HPSG- 
like grammars. Work on TD£ has started within the 
DISCO project of the DFKI [14] (this volume). The 
DISCO grammar currently consists of approx. 900 
type specifications written in TD£ and is the largest 
HPSG grammar for German [9]. The core engine of 
DISCO consists of T/I£ and the feature constraint 
solver //D/A~ [3]. ND/~ itself is a powerful untyped 
unification machinery which allows the use of dis- 
tributed disjunctions, general negation, and fllnction- 
al dependencies. The modules communicate through 
an interface, and this connection mirrors exactly the 
way an abstract typed unification algorithm works: 
two typed feature structures can only be unified if 
the attached types are definitely compatible. This 
is accomplished by the unifier in that ~ handles 
over two typed feature structures to TD£ which gives 
back a simplified form (plus additional information; 
see Fig. 1). The motivation for separating type and 
featnre constraints and processing them in special- 
ized modules (which again might consist of special- 
ized components as is the case in 73)£) is twofold: (i) 
this strategy reduces the complexity of tile whole sys- 
tem, thus making the architecture clear, and (ii) leads 
to a higher performance of the whole system because 
every module is designed to cover only a specialized 
task. 

3.1 TD£ L a n g u a g e  

7"D£ supports type definitions consisting of type con- 
straints and feature constraints over the operators 
A, V, -1, and ® (xor). The operators are general- 
ized in that they can connect feature descriptions, 
coreference tags (logical variables) as well as types. 
77)£ distinguishes between arm types (open-world se- 
mantics), sort types (closed-world semantics), built-in 
types (being made available by the underlying COM- 
MON LISP system), and atoms. Recursive types are 
explicitly allowed and handled by a sophisticated lazy 
type expansion mechanism. 

In asking for the greatest lower bound of two awn 
types a and b which share no common subtype, TD£ 
always returns a A b (open-world reasoning), and not 
2_. The reason for assuming this is manifold: (i) par- 
tiality of our linguistic knowledge, (ii) approach is 
in harmony with terminological (KL-ONE-like) lan- 
guages which share a similar semantics, (iii) impor- 
tant during incremental grammar/ lexicon construe- 
tion (which has been shown usefid in our project), 
and (iv) one must not write superfluous type defini- 
tions to guarantee successful type unifications during 
processing. 
The opposite case holds for the C, LB of sort types 
(closed-world approach). Furthermore, sort types dif- 
fer in another point from avm types in that they arc 
not fllrther structured, as is the case for atoIns. More- 
over, 779£ oilers the possibility to declare partitions, 

a feature heavily used in IfPSG. In addition, one can 
declare sets of types as incompatible, meaning that 
the conjunction of them yields ± ,  so that specific avm 
types can be closed. 

7"D£ allows a grammarian to define and use param- 
eterized templates (macros). There exists a special 
instance definition facility to ease the writing of lex- 
icon entries which differ from nor,hal types in that 
they are not entered into the type hierarchy. Input 
given to TD£ is parsed by a Zebu-generated LALR(1) 
parser [8] to allow for an intuitive, hi9h-level input 
syntax and to abstract fi'om uninteresting details im- 
posed by the unifier and the underlying Lisp systenr. 

The kernel of TD£-. (and of most other monoton- 
ic systems) can be given a set-theoretical semantics 
Mong the lines of [12]. It is easy to translate TD£. 
statements into denotation-preserving expressions of 
Smolka's feature logic, thus viewing 7"D£ only as syn- 
tactic sugar for a restricted (decidable) subset of first- 
order logic. Take for instance the following feature 
description O written as an attribute-vMue matrix: 

np 
[ agr'eement ] 

¢ =  A ~ [ ]  NUM sO 
PERS 3rd 

SUBJ [ ]  

It is not hard to rewrite this two-dimensionM de- 
scription to a flat first-order formula, where at- 
tributes/features (e.g., .~GR) are interpreted as binary 
relations and types (e.g., up) as unary predicates: 

3~.  ,~p(¢) A ,Ga(e,, ~) A ,,a,°~em~,,t(~) A 
RUM(x, sg) A PERS(x, o°7"(1) A SUBJ(¢, x) 

The corresponding VD£ type definition of ¢ looks as 
follows (actually &; is used on the keyboard instead 
of A, [instead of V,~instead of ~): 

¢ := np A [AGR # x  A agreement A [NUll st, PERS at'd], 
SUBJ #~]. 

3.2 T y p e  H i e r a r c h y  

The type hierarchy is either called directly by the 
control machinery of TD£ during the detinition of a 
type (type classification) or indirectly via the simpli- 
tier both at definition and at run time (type unifica- 
tion). 

3.2.1 E n c o d i n g  M e t h o d  

The implementation of the type hierarchy is based 
on A'/t-Kaci's encoding technique for partial orders 
[1]. Every type t is assigned a code 7(t) (represented 
via a bit vector) such that 7(0 reflects tile reflexive 
transitive closure of the subsumption relation with 
respect to t. Decoding a code c is realized either 
by a look-up OFF 3t . 7-1(c) = t) or by computing 
the "maximal restriction" of the set of types whose 
codes are less than c. l)eper, ding on the encoding 
method, the hierarchy occupies O(n logn) (compact 
encoding) resp. O(n 2) (transitive closure encoding) 
bits. ltere, GLB/LUB operations directly correspond 
to bi t-or/and instructions. GI,B, I, UB and ~ com- 
putations 1-1ave the nice property that they can be 
carried out in this tYamework in O(n), where n is the 
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~]  , [...] . . . . . . . . . . .  _> 

Q u e r y  

{~ 1, [...1 
up/ . R e s u l t  

~]]A[~ 

<bl,N> ~ p e  h i e r a , r c h y  

-<~- -  ( , tAb)  

TZ)£ 

<{~, ,, A ~, _ q ,  {yo~, ~o, ~ai~)> 

Figure 1: h t t e r f a ( ' e  b e t w e e n  "FDE a n d  ll/)'&& Depe tMiug  on the type  hierarchy and the type  o f  ~ and [~, 
TD£. e i ther  re turns  c (c is de l in i te ly  the ( ;LB  o f  a and  b) or a A b (open-world  reasoning) resl). ~L (clo.se<l-world 
reasoning 9 i f  there doesn ' t  ex is t  a s ingle type  which is ecplal to the G L B  of a and b. In addi t ion,  7"DL: de termi tws  
whe ther  tlDi32: m u s t  carry ou t  lbature  term unif ication (yes) or not  (no), i.e., the return t ype  contains  all the 
in format ion  one needs to work  on prol>erly ( f a i l  signals a global  unif icat ion lhilure). 

number  of (,ypes. 1 

Ai tq (ac i ' s  nmthod has been extended in 7'D£ to 
cover the ol)en-world nature  of avm types in thai; po- 
tential  (]I ,I~/LUB cmMidates (calculated front their 
codes) must  be verified. Why so'. e Take the. lbllowing 
ex~mrple to see why this  is ne.cessary: 

a: := J/ A z  
x' := y' A z' A [ .  1] 

l )uring processing, one can definitely subst i tu te  y A z 
through % I)ut rewriting !I' A z '  to a:' is not correct, 
because x' difl'ers fi'om f A z ' -  a/ is more speciiic as 
a coltseqtlellCX: of the l~e;~ture consl, r~t[llt [tt 1]. So We 
make ;~ dist inction between the "internal" gre;~test 
lower bound  GI ,B4,  concerning only the type sub 
sumptiot~ relat ion i)y using Ait-Kaci 's  method alone 
(which is however used for sort types) and the :'ex- 
t(,rmq" one, GIA}c , which takes the subsumpt ion  re- 
lat ion over fi;ature s t ructures  into &(:COtlllt. 

With  Gl,l)-< and GLIJc in mind,  we (:m~_ define, a 
generalized (~ ,B  operat ion infbrmally by the follow- 
ing table. This  GLI} operation, is actually used during 
type mfitication (jr(.' : :  feature constraint) :  

-di~g- ,Tis,,~-.~oT! ,~fft,~i,u-F_ f,;7- 

[_f,'~ _ lLs , ' -~ .  [ ± l - Is-.-- ; . j  

?lJh('A'c 

a,Jmj < > Gl . l lE ( .vmi ,  a,,m~) -..vm,:~ 
(IUIIL 1 #,:--~? (ll~?lt I ~ (llHII. 2 

I. .L ~-->. C[,I]~ (amnl ,  arm2)  -- J_, via an 
explicit incomp~ttibility declara~tion 

aural A aline!, otherwise (open world) 

~ . .  ,,,,,,,,~ < = .  exp~md(,,,,,,,,,.~) ni~:~,, ¢ z 
_L, otherwise 

sor't.~ ¢-=> ( ] l , I } 5 (sor t t ,  .sorte) = ~orta 
3. so r t  t 4;:._~ sort1 == sort2 

.L, otherwise (closed worM) 

at, o ra l  ,~ ~--'.~ type-of(a/oral  ,~) ~ sort .& i ,  
,1. where sort~,l is ~ built-in 

J., otherwise 

5 . .  atoHtt #,--~ o{oHt I =: (tlont 2 
±, otherwise 

T 4 ~ >  f,:l  VI fc~ ¢ _l_ 
6 . .  _L, otherwise 

The encoding a lgor i thm is also exl,m,ded towards 
the rcdcJiuition o f  types and the use o f  undcJlmd 
types, an essentiM lmrt of at, im:remental gram- 
mar / lexicon dew.qopmetd, systenl, ll.edetining a I,ype 
means not oldy to m~ke changes local to this type. 
h,stead, (.,lie }I:4S to redefil,e all depcndcul.s of this 
type - a l l  subtypes in case of a conjunctive l;ype def 
itdtion and all disjunction al ternatives for at disjuuc- 
tive type speeilication plus, in bo th  cases, all types 
which use these types in their de[inition. The depen- 
dent types o[ a l.ype t can be characterized gr~q)h- 
theoretically via l,he strongly c(mnected component  
of t with respect to the depe,Mency relation. 

3 . 2 . 2  D ( m o l n I ) o s i n g  T y p e  D e f i n i t i o n s  

Conjm~ctivc,  e.g., x := J/A z ~tnd disju,u;tivc t!lp('. 
specificalio)~s, e.g., a/ ::-= f V z / are entered difl'er- 
ently into the hier~u'chy: :c inherits from its s,,per- 
l;ypes 9 and z, whereas x' delines i tse|f  through its 

IActuMly, one can choose, in 7"DE I)ctwccn the two 
encoding I:cchniques and between bit vectors and bignums 
ill COMMON [ASP for the representatiou of the codes, h, 
our I,l.ql' implelnentaLion: operatimm on bignulns are. a 
magtfil;ude faster than on bi~ vectors. 
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\ J  

z l u A v A w l  

y 

Figure 2: The intermediate types luAH and NAvAwl 
are introduced by TD£ during the type delinitions 
,= := uA' , ,  A [a 0] and Y := wA v A , * A  [a 1]. 

alternatives !/ and z'.  This distinction is represent- 
ed through tile use of different kinds of edges in the 
type graph (bold edges denote disjunction elements; 
see Fig. 3). But; it is worth noting that both of tllem 
express subsumption (x ~ y and x'  >-_ y') and that 
the GLB/LUB operations must work properly over 
"conjunctive" as well as "disjunctive" subsumption 
links. 

TD£ decomposes complex definitions consisting of 
A, V, and ~ by introducing intermediate types, so 
that the resulting expression is either a pure covjunc- 
lion or" a disjunction of type symbols. Intermediate 
type names are enclosed in vertical bars (ef. the in- 
termediate types [u A v I and lu A v A w{ in Fig. 2). 

Tile same technique is applied when using • (see 
Fig. 3). (b will be decomposed into A, V and ~, plus 
additional intermediates. For each negated tyt)e ~t, 
7"1)£ introduces a new intermediate type symbol I-'tl 
having the definition ~t and dechu'es it incompatible 
with t (see Section 3.2.a). I,~ addition, if t is not 
already present, T/)£ will add t as a new type to the 
hierarchy (see types [~b[ allcl ]-el in Fig. 3). 

Let's consider the example a := b ® c. The de- 
composition can be stated informally by the follow- 
ing rewrite steps (assuming that the user tu~s chosen 
CNF): 

a := b O c  

. := (~ A -~(-) v ( -~  A c) 
. : =  (b v -~b) A (b v c) A ( -~  V ~ )  A (-,e V e) 

,, : =  (~ v e) A ( ~  v ~ )  

. : =  I~vel A I~bWel 

3.2.3 Incompat ib le Types and Bot tom 
Propagation 

Incompatible lypes lead to the introduction of spe- 
cialized bottom symbols (see Fig. 3 and 4) which how- 
ever are identified in the underlying logic in that they 
denote the empty set. These bottom symbols must be 
propagated downwards by a mechanism called bottom 
propagation which takes place at definition time (see 
Fig. 4). Note that it is important to take not only 
subtypes of incompatible types into account but also 
disjunction elements as the following example shows: 

T 

-k(b, ~b] J-{e,~c} 

Figure 3: Decomposing a := b®c, such that a inherits 
from tile intermediates IbVc[ and b / , v~c l .  

.k -- a A b. } _~C+ a A bi := J- and a A b~ = J_ 
b := bl V b.). 

One might expect; that incompatibility statements 
together with feature term unification no longer lead 
to a monotonic, set-theoretical semantics. But this 
is not the case. To preserve monotonicity, one must 
assume a 2-level interpretation of  tgpcd feature struc- 
tures, where feature constraints and t, ype constraints 
might denote diflb.rent sets of objects and the glob~ 
al interpretation is determined by the intersection of 
the two sets. Take for instance the type definitions 
A := [a 1] and 13 := [b 1], plus the user declaration 
J- = A A B, meaning that A and B are incompatible. 
Tl,en A A B will simplify to J_ although the corre- 
sponding feature structures of A and [t successfully 
unify to [a 1, b 1], thus the global interpretation is ±. 

3.3 S y m b o l i c  S i m p l i f i e r  

[File simplifier operates on arbitrary TD~ expressions. 
Simplitication is done at definition time and at run 
time when typed unification takes place (cf. ]rig. 1). 
The main issue of symbolic simplitication is to avoid 
(i) unnecessary feature constraint unification and (it) 
queries to the type hierarchy by simply applying 
"syntactic" reduction rules. Consider all expression 
like x~ A . . .  A xi . . . A " ~ a : i  , . . A xn. The shnplilier will 
detect .k by simply applying reduction rules. 

The simplification schemata are well known from 
the propositional calculus. They are hard-wired in 
the implementation to speed up computation. For- 
really, type simplitication in "FD£ can be character- 
ized as a term rewriting system. A set of reduction 
rnles is applied until a normal form is reached. Con- 
fluence and termination is guaranteed by imposing 
a total generalized lexicwraphic order on terms (see 
below). In addition, this order has the nice effects 
of neglecting eommutat ivi ty (which is expensiw.' and 
might lead to termination problems): there is only 
one representative lbr a given formula. Therefore, 
memoizatiou is cheap and is employed in TD£ to 
reuse precomputed results of simplilied expressions 
(one must not cover all permutations of a formula). 
Additional reduction rules are applied at run time 
using "semantic" inlbrmation of the type hierarchy 
(GLB, LUB, and ~).  
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[ l -  

d ',:: b A [p t']. 

< : : :  b A [p --]. 

. t ,  - - - +  <, / / ~ .  c 

.l-{a,b>,:} I-{a,b,c} 

Iqgure d: IJot tom propagat, icm trigg'ered throltg'h the :mbEglWS d aud c o f  b, ,so f, ha.L a A d A c as well w; a A ,.: A c 
will simI>lil ~ to _L dur ing  processing.  

a . a . 1  N o r n i a l  F o r l l i  

hi  order  to reduce ;ui m;1)il;rary l,yl m express ion to 
it s impler  express ion,  Siml)lifi(:al;ion rules inusl; I)e a])- 
plied. So we have to del ine wh;Ll, it, lfie0Al.q for &ll 
e x p r e s s i o l l  t() t)(; "SJ l l l l l l e ' .  Ollo, CilJl eil;he, r (:boo,q(; t h e  
coujimcl,ivc or disjuimt, ive nol:maJ tbrm. T h e  ~tdwtlr- 
I, a gcs of CN I" / I )NF are: 

i UNIQIIF, NES,q 
<l'yl)e ('.XlJl:ossiolls ill llOl'lll~t[ [O1"111 ttl;C IllliqllO, 
n iodu lo  (;onunutal; ivi l ,y. Sorl, ing l,yllc extJressions 
according t,o ~ t;oi,;d lexi(Jographic order  will lead 
i;o a i:otM u i l i q u e n e s s  o f  l ,yl)e e x l l i : e s s i o n s  (,<-;ee, 
Section 3.3.3). 

• LINEAI{I'FY 
' [ 'ype express ions  in l iOi' l l lal [ 'orll l ;~i:e l inear.  Ar 
bi l ; r ; t ly  l lesl .ed expl:essi() i is  c:itii l ie 1,ra.nsfortxied 
inl,o l la l  (JXl)i'OS,'-;iOllS. T h i s  l[l;,ty l'(',dlil;(? i ,he  COHI 
plexi l ,y of  later  s in ip l i l i ca t ious,  e,g;., ;d; r l l i l  t ime.  

• ( J t ) M l ' a  I t A B I I , 1 T Y  

T h i s  l ) rope r i , y  is a colls(xlll(;lt(:(! o f  t h e  t w o  oi;hel; 
proli(;l:tie,<;. (~'ni(lue aal(I line,u: exl)ressions lnake 
it; easy i,o l i i ld  O1" 1,() cOUllm,'e (sul))expl:essions. 
Th is  is itll l)Ort, allt, [or the l i ierl loiz~d;iol i  lx;t:hli ique 
descr ibed in Scct ioi i  3.3.4. 

3 .3 .2  l l , e d u c t i o n  Rnl(~s 

lu order  to reach a n o r m a l  forui,  it; would suffice 
to at)l)ly only  the  s(:ll.etlt;t|;;~ ['or (lf)ll})[(~ neg~l,ion, dis- 
I,ribul, ivity, and  De Morgan ' s  h~ws. Ilowever,  in the  
worst  case, t, hcsc I, hr('(; rtlles wouht  blow iI t) i,he leugl;h 
of th(~ n o r m a l  lb rm to eXl)OnCnl,ial size ((:omp~u'ed 
wi th  ],he mtull)er o[ lit, erals  iu the  originaJ expres- 
sion).  To ~o,'oi(l I, his, ()(;her titles ;tr(' use(I in te rmedi -  
ately:  i dempotcnce ,  idenl, ity, al)sorpl,ioih etc. If  they 
can l)e appl ied,  t, he.y alw~tys re(tilt:t; l,he lengl,h of I,hc 
expressions,  l']specia.lly w[; run  l, ime, llu(; also al; del L 
]nil;ion t i lne,  i[, is use['ul to eXldOi[, infbrmM, i(m ['rt)ln 
the, t,ype hi(warchy. I"url,h(:r siml)lilit:al, ious are l)ossi- 
hie by ~csking lbr  l,h(; ( : l l , l t ,  ] , t i l l ,  altd ~.  

3 .3 .3  L c ' x l c o g r a l ) h i c  O r d e r  

To avoid the  al)pl i( 'a t ion of l;ltc co tmnuta t iv i l ,  y rule, 
wc introduc(~ ;~ to(,al lcx icographic  order  on tyllc cx- 
lU'essious. Toge the r  wi th  I)NF/(TNI, ' ,  we ol)taiil a 
unique  sorl;ed n o r m a l  fornt  tbr  an a rb i t r a ry  l;y[)e ex- 
pression.  Th i s  guarant ,ees fast  (:oinparabilil,y. 

We define I;he order  <NF on 7>ary norma l  forms:  
t~,lpe <N~; neqaled type <NI; con junc t ion  <NI,' dis,- 
,]'?trtCti01~ <NI" symbol <NI" s tr iu9 < N F  ~lltll21J(~F. l"ot' 
the  coinl)arisoil  of a toms ,  st;rings, and  type  names ,  
we use the  lexic, ographica l  order  on s t r ings  ;rod lbr 
llitlllt)(!l:S [,h(~ order ing  < ou n ; t tu ra l  IIIIlH[)OI'S. 

l",x;unple: a <NI;  b <NI;  bb <NI;  -m(t <NI;  c.z A b <NI,' 

a A - ,a  <NI;  a V b <NJ" (t V b V c <NI;  a V i 

:1 .3 .4  M e m o i z a l f i o i t  

T h e  m e m o i z a t i o n  t, cchnique  describe, d in [10] hw-; 
1)een ad;q)ted in order  to  reuse precomlml,ed resull;s o]' 
l.ype sinq)li[i<:at,ion. T h e  lexicogral>hically sor ted  nor- 
lnM f¢)rni guar ;ui tees  fast; ~u:cess 1;o lU:CCOlnlml;e(l l,ype 
sinll) l i l ications.  Memoiza | ; ion  resull, s are also used by 
the recursive simplific;d;ion algori t ;hm (;o exploit, pre- 
con l lmted  resul ts  for subexln:cssions.  

Some enqfir ical  resul ts  show I;he usefulness  of nteui- 
oizat ion,  T h e  cu r ren t  DISCO grallltlUtr ]'t)r Q',0r- 
lI|~l,ll co118i81,8 o]' 88 F) types  ;uld 27 tentl~latx:s. AI: 
ter a lull (,ylm expaus ion  of a toy lexicon of 244 i n  
s(,;tltces/elll, ries, the  lnemoiz;tl, ion tab le  txmtaium ap- 
prox. 3000 cnl;ries ( l i terals  m'c noL lneuloized) .  18000 
resul ts  have been reused ~tt; lc'asl; once (some up t;(~ 
600 t i ines)  of whMl  90 % ~re proper  sinlplilica(,ions 
(i.e., the si inpli l icd formulae  m:e real ly shor te r  th~m 
t, he uns impl i l ied  ones).  

3 . 4  T y p e  E x l m n s i o n  a n d  C o n t r o l  

Wc no ted  earl ier  I, h a t  types allow us to refer to c(m,-- 
pIex cons t r a in t s  folirougli t im use o[ symbol  nantes .  
l/,ecolml, rucl, ing |,he consl, r;tinl,s which de te rmi lm a 
I,ype (rept:eseltted as a [ 'eature sl,rucl;ure) requires a 
complex  ol)er;-ttion called Qjpc c,7,Tmusz'om Thi s  is 
COml);tr;tble to (Jat 'lmnl;er's lolalhj  wcll-l~jpcdncss [5]. 

3 . 4 . 1  M o t i v a t i o n  

In ~J'l)l~, I,he mot, iwttioll  for type  expans ion  is m;m-  
iibl(l: 

• CONSISTI,;NCY 
AI, def ini t ion t ime,  type  expans ion  del,ermiues 
whc| ;her  tim st:l, of |,ype delinil;ion,s ( g r a m m a r  and 
lexicon) is consis tent .  At; run  t ime,  t, ype exi);m- 
sion is involved in checking the  satis[i;d)ili ty of 
l;he unilical;ion of two part,]ally explm(h.'d typed 
fe;d,ure s(;rucl, lures, e.g., du r ing  parsing.  
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• ECONOMY 
From the s tandpoin t  of efficiency, it; does make 
sense to work only with small, part ial ly expand- 
ed structures (if possible) to speed up feature 
term unification and to reduce the antount  of 
copying. At the end of processing however, one 
has to snake the resul t /const ra in ts  explicit. 

• ItECURSION 
l{ecursive types are inherently present in modern 
constraint-based granmlar  theories like IIPSG 
which are not provided with a context-free back- 
bone. Moreover, if the formalism does not al- 
low fnnctionM or relational constraints,  one tnust 
specify certain f lmct ions/rela t ions like append 
through recurslve types. Take for instance Ait- 
Kaci 's  version of the append type which (:ass be 
s ta ted in "]-DE as follows: 

append := appendo V appendl. 
aN)endo := [FRONT < >, 

BACK # 1 A  list, 
WHOLE #1] .  

append, := [FRONT < #first.  #~v.stl >, 
BACK #back A list, 
WHOLE < #first.  #rest2 >, 
PATCH append A [FRONT #rest l ,  

BACK #back, 
WHOLE #rest2]]. 

o TYPE DEDUCTION 
Parsing and generation can be seen in the light of 
type deduction as a uniforin process, where ideal- 
ly only the phonology (for parsing) or the seman- 
tics (for generation) must  be giw'.n. Type expan- 
sion together with a sufficiently specified gram- 
mar  then is responsible in both  cases for cov- 
s t rnct ing a fully specified feature s t ructure  which 
is maximal  informative and compatible  with the 
input.  Itowever, [la] has shown tha t  type ex- 
pansion wi thout  sophist ieated control strategies 
is in Illany cases inelficient and moreover does 
not  guarantee terminat ion.  

3.4.2 C o n t r o l l e d  Type.  E x l i a n s i o n  

Uszkoreit [la] introduced a new strategy tbr lin- 
guistic processing called controlled linguistic deduc- 
lion. Ills approaeh permits  the.specit icat ion of lit> 
gnistic performance models wi thout  giving up the 
declarative basis of linguistie competence, especial- 
ly monotonic i ty  and eompleteness. The ewduation of 
bo th  cm0nnct ive and disjunctive constraints  can be 
controlled in this framework. For conjunctive con- 
straints,  the one with the highest faihtre probabil i ty 
should be evahtated first. For disjunctive ones, a suc- 
cess measure is used instead: the al ternat ive with the 
highest success probabi l i ty  is used until  a unification 
fails, in which case one has to backtrack to the next 
best al ternative.  

7'D£ and /./D~de snppor t  this strategy in tha t  ev- 
ery feature s t ructnre  can be associated with its sue- 
cess/faihtre potentiM such tha t  type expansion can be 
sensitive to these settings. Moreover, one can make 
other decisions as well during type expansion: 

• only regard s t ructures  which a r t  subsumed by a 
given type resp. the opposite case (e.g., expand 
the type subcat-list always or never expand the 
type daughters) 

• take into &ccouttt only structures under cer- 
ta in  paths  or again assume the oliposite case 
(e.g., always expand the wtlue nailer pa th  
SYNSEMILOCICAT; in addit ion,  it is possible to 
employ path  pa t ten l s  in the sense of pa t tern  
matching)  

• set the depth of type expansion for a given type 

Note tha t  we are not restricted to apply only one 
of these sett ings--  they can be used in combinat ion 
and can be changed dynamical ly  during processing. 
It does make sense, tbr instance, to expand at cer- 
tain well-defined points during parsing the (partial) 
information obtained so far. If this will not resnlt  in a 
failure, one can throw away (resp. store) this flflly ex- 
panded feature structure,  working on with the older 
(and smaller) one. tlowever, if the information is in- 
consistent, we luust backtrack to older stages in com- 
putat ion.  Going this way which of course assumes 
/seuristic knowledge (language as well as g rammar-  
specific knowledge) results in faster processing and 
copying. Moreover, the inference engine lllnst be able 
to handle possibly illconsistenl, knowledge, e.g., in 
cast  of a chart  parser to allow for a third kind of 
edge (besides active and passive ones). 

3.4.3 R e e m ' s i w ;  T y p e s ,  h n p l e n m n t a t i o n a l  
I s sues ,  a n d  U n d e e i d a b i l l t y  

The set of all recursive types of a given gram- 
mar / lex icon can be precompiled by employing the 
dependency graph of this type system. This  graph 
is updated every t ime a new type delhfition is added 
to the system. Thus detecting whether a given type 
is recnrsive or not reduces to a simple table look--up. 
ltowever l, he expansion of a recnrsive type itself is a 
little bit  harder. In T'D£, we are using a lazy expan- 
sion technique whMt only makes those constraints  
explicit which are really new. To pslt it in anoth-. 
er way: if no (global or local) control information 
is specified to guide a specific expansion, a recnrsive 
type will be be expanded under  all its paths (local 
plus inheri ted paths) until  one reaches a point where 
the information is already given in a prcJi:r path. We 
call such an expanded s t ructure  a resolved typeil t?~.a - 
ture structure.  Of course, there are inlinitely many 
resolved feature structures,  but  this s tructure is the 
most general resolved one. 

Take lbr instance the append example l¥om the 
1)revions section, append is of course a recursive 
type because one of its al ternatives,  viz., append 1 
uses append under the PATCH attr i lmte.  Exl)and- 
ing append with no addi t ional  information sup- 
plied (especiMly no path  leading inside appcndl, 
e.g., PATCH I PATCH I PATCH) yields a disjunctive feature 
s t ructure  where bo th  append o and append I are sub- 
s t i tuted by their  definitiorl. The expansion then stops 
if no other informatioll  enforce a fisrther expansion. 

In practice, one has to keep track of the visited 
paths and visited typeil feature s tructures to avoid 
unnecessary expansion. 3'0 make expansion more el L 
ficient, we mark structures whether  they are fully ex- 
panded or not. A feature s t rnetnre  is then fully ex- 
panded iff all of its substructures  are fully expanded. 
This simple idea leads to a massive reduction of the 
search space when dealing wills incremental  expan- 
sion (e.g., during parsing). 
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It is worth noting that the sat|st|ability of fea- 
ture  descr ip t ions  a d m i t t i n g  recursive type  equa-  
t i o n s / d e t i n i t i o n s  is in general  undecidable .  Rounds  
and  Manas ter - l l ,  aumr  [11] were the  t irst  hav ing  shown 
t h a t  a t (asper - l l .ounds  logic enr iched wi th  recnrsive 
types allows one to encode  it Tu r ing  machine ,  l ie- 
cause our  logic is much  more  richer,  we imlne( l ia te ly  
get; the  sanle  resul t  tbr  TD£.  

i towever ,  one can  choose in 7"l)£ be tween  a com- 
plete  expans ion  a l g o r i t h m  which  m a y  not  t e r n i i n a t e  
and  a non-comf) le te  on(.' to  g u a r a n t e e  tcrmin~-ttion (see 
[2] and  [5, Ch.  1,5] for s imi la r  prol ,osals  ). T h e  la t te r  
ease heavi ly  depends  on the  no t ion  of resolvedness 
(see above) .  In b o t h  cases, the  d e p t h  of the  search 
space can be res t r i c ted  by specifying a m a x i m a l  p a t h  
length.  

4 C o m p a r i s o n  w i t h  o t h e r  S y s t e m s  

7'D/~ is tmique  in t h a t  it iml ) l emevts  m a n y  novel fea- 
tures  no t  found  in o the r  sys tems  like A L E  [4], I,IFI'; 
[2], (7,: TIeS [15]. Of  course,  these sys tems  l ,rovide 
o the r  l~atures  whiclt  are no t  present  in our formal-  
| s in .  W h a t  makes  7,D£ unique  in COmlTarison to t h e m  
is the  d i s t i nc t i on  open  vs. closed world,  the  awdlabi l -  
ity of the  full boo lean  connec t ives  and  d i s t r i bu t ed  
d i s junc t ions  (v ia  U D / ~ ) ,  as well as an  imphmte , l ted  
lazy type  expans ion  mecha i f i sm for reeursive types  
(as c o m p a r e d  wi th  LIFE) .  AI,E,  [br ins tance ,  ne i ther  
allows d i s | m i n t | r e  nor  r ecu r s | r e  tyl)es and  enforces 
the  l;ype h ie ra rchy  to be a I?,CPO. IIowever,  il; makes  
recurs ion avai lable  througl ,  det ini te  re la t ions  and  in- 
co rpora tes  special  m e c h a n i s m s  [br eml) ty  categories  
and  lexical rules. T F S  comes  up wi th  a closed worhl,  
the  unawdlab i l i t y  of nega t ive  i n f o r m a t i o n  (only im- 
pl ici t ly  present )  and  only  a poor  t b rm  of d i s junc t ive  
i n f o r m a t i o n  bu t  pe r fo rms  pars ing  and  genera t ion  en- 
t i rely t h r o u g h  type  deduc t ion  (in fact,  it was the  t irst  
sys tem) .  LIF'I'3 comes  closest to us bu t  l)rovides a se- 
man t i c s  for types  t h a t  is s imi la r  to TFS .  Moreover  
the  lack of nega t ive  i n f o r m a t i o n  and d i s t r ibu ted  dis- 
j u n c t i o n s  makes  it aga in  compara l ) le  wi th  TFS.  L I F F  
as a whole can be seen as an  ex tens ion  of PROI,O(~ (as 
was the  case for its predecessor  LO('HN), where  tirst- 
order  t e rms  are rel)laced by .~-terms. In th is  sense, 
I,IFF, is rMmr  t h a n  onr  foma l i sm in t h a t  it offers a 
fifll r e la t iona l  calculus.  

5 S u m m a r y  a n d  O u t l o o k  

In this  pal)er , we have  presen ted  7,D£, a typed tha- 
ture  for lnMism thg~t in t eg ra tes  a |)owerflfl fea ture  con- 
s t rMnt  solver  and  type  sys tem.  13oth of t ] tem provide  
the  boo lean  connec t ives  A, V, and  ~, where a con>  
l)lex exl)ression is decomposed  by emphTying in te rme-  
d ia t e  types.  Moreover ,  recurs ive types are suppo r t ed  
as well. lit 7,D/2, a g r a m m a r  wri ter  decides whe the r  
types liw. ~ in an open  or a closed world. Th i s  ef- 
fe.cts ( ]L t l  and  LIJI] c o m p u t a t i o n s .  ' | ' he  type  sys tem 
i~,self consis ts  of several  inference com ponen t s ,  each 
designed to cover etficiently a specific task:  (i) a tilt 
vector  encod ing  o[ the  hierarchy,  (ii) a fas t  symbol ic  
s impli l ier  for com p lex  type  expressions,  (iii) m e m o  
iza t ion  t;(7 cache preeomI)uted  results ,  and (iv) a so- 
ph i s t i ca ted  type  expans ion  n m c h a n i s m .  The  sys t em 

as descr ibed in this  paper  has  been i m p l e m e n t e d  in 
COMMON IASP and  in teg ra ted  in tile I ) ISCO environ-  
m e n |  [14]. 

T h e  next  lll;kjor version of 7,D£ will be in tegra t -  
ed into a dec la ra t ive  sl)ecil ication langt tage which al- 
lows l inguis ts  to define eoutrol  kuowledge t h a t  can be 
nsed du r ing  proe~.'ssing. In add i t ion ,  ce r ta in  forms of 
know|edge, c o m p i l a t i o n  will be m a d e  availa/fle in fu- 
ture  versions o[' TD/~, e.g., the  a u t o l n a t i c  de tec t ion  o[' 
syn tac t i c  ineonq)a t ib i l i t i es  be tween  tyl)es , so t h a t  a 

type  eOmlmta t ion  can  subsl , i tute  an  extens ive  fea ture  
t e rm  unif icat ion.  
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