
SOLVING A N A L O G I E S ON WORDS: A N A L G O R I T H M

Yves Lepage
ATR Interpret ing Telecommunicat ions Research Labs,

Hikaridai 2-2, Seika-tyS, Sgra.ku-gun, Ky5to 619-0288, Japan
lepage~itl, atr. co. jp

Introduction
To introduce the algorithln presented in this pa-
per, we take a path that is inverse to the his-
torical development of the idea of analogy (see
(Hoffman 9.5)). This is necessary, because a
certain incomprehension is faced when speak-
ing about linguistic analogy, i.e., it is generally
given a broader and more psychological defini-
tion. Also, with our proposal being computa-
tional, it is impossible to ignore works about
analogy in computer science, which has come
to mean artificial intelligence.

1 A S u r v e y of W o r k s on A n a l o g y

This paper is not intended to be an exhaustive
study. For a more comprehensive study on the
subject, see (Hoffman 95).

1.1 M e t a p h o r s , o r Impl ic i t Analogies

Beginning with works in psychology and arti-
ficial intelligence, (Gentner 83) is a milestone
study of a possible modeling of analogies such
as, "an atom is like the solar system" adequate
for artificial intelligence. In these analogies, two
domains are mapped, one onto the other, thus
modeling of the domain becomes necessary.

/
sun -~ nucleus

planet ~ electron

In addition, properties (expressed by clauses,
formulae, etc.) are transferred from one domain
onto the other, and their number somehow de-
termines the quality of the analogy.

attracts(sun, --+f'attracts(nucleus,
planet) electron)

moremassive(sun, -~fmoremassive(nucleus,
planet) electron)

However, Gentner's explicit description of
sentences as "an A is like a B" as analo-
gies is subject to criticism. Others (e.g.
(Steinhart 94)) prefer to call these sentences
metaphors 1, the validity of which rests on sen-
tences of the kind, "A is to B as C is to D", for
which the name analogy 2 is reserved. In other
words, some metaphors are supported by analo-
gies. For instance, the metaphor, "a.n atom is
like the solar system", relies on the analogy, "an
electron is to the nucleus, as a planet is to the
8~tl~" .3

The answer of the AI community is com-
plex because they have headed directly to more
complex problems. For them, in analogies or
metaphors (Hall 89):

* two different domains appear

, for both domains, modeling of a knowledge-
base is necessary

, mapping of objects and transfer of proper-
ties are different operations

* the quality of analogies has to be evalu-
ated as a function of the strength (number,
truth, etc.) of properties transferred.

We must drastically simplify all this and
enunciate a simpler problem (whose resolution
may not necessarily be simple). This can be
achieved by simplifying data types, and conse-
quently the characteristics of the problem.

1If the fact that properties are carried over char-
acterises such sentences, then etyulologically they are
metaphors: In Greek, phercin: to carry; recta-: between,
among, with, after. "Metaphor" means to transfer, to
carry over.

2In Greek, logos, -logia: ratio, proportion, reason, dis-
course; ana-: top-down, again, anew. "Analogy" means
the same proportions, similar ratios.

aThis complies with Aristotle's definitions in the
Poetics.

728

1.2 M u l t i p l i c i t y vs U n i c i t y o f D o m a i n s

In the field of natural language processing, there
have been plenty of works on pronunciation of
English by analogy, some being very much con-
cerned with reproducing human behavior (see
(Damper &: Eastmond 96)). Here is an illustra-
tion of the task from (Pirelli & Federici 94):

: /vejn/
.L g .1. h

s a n e - - X = /sejnl

Similarly to AI approaches, two dolnains ap-
pear (graphemic and phonemic). Consequently,
the functions .f, 9 and h are of different types
because their dolnains and ranges are of differ-
ent data types.

Similarly to AI again, a common feature in
such pronouncing systems is the use of data
bases of written and phonetic forms. R.egard-
ing his own model, (Yvon 94) comments that:

The [...] model crucially relies upon the
existence of nunterous paradigmatic rela.-
lionships in lexica.l data bases.

Paradigmatic relationships being relation-
ships in which fl~ur words intervene, they are
in fact morphological analogies: "reaction is to
reactor., a.s faction is to factor".

reactor f reaction

I g I g
factor ! . fact ion

Contrasting sharply with A[approaches,
morphological analogies apply in only one do-
main, that of words. As a consequence,
the nulnber of relationships between analogical
terms decreases from three (f , 9 and h.) to two
(f and g). Moreover, because all four terms
intervelfing in the analogy are from the same
domain, the domains and ranges of f and [I
are identical. Finally, lnorphological analogies
can be regarded as simple equations indepen-
dent of any knowledge about the language in
which they are written. This standpoint elim-
inates the need for any knowledge base or dic-
tionary.

reactor ~ rcactio.n

.1. .L
factor ---,I x?

1.3 U n i c i t y vs M u l t i p l i c i t y o f C h a n g e s

Solving morphological analogies remains diffi-
cult because several simultaneous changes may
be required to tra.nsform one word into a see-
ond (for instance, doer -~ undo requires the
deletion of the suffix -er anti the insertion of
the prefix un-). This problem has yet to be
solved sa.tisfactorily. For example, in (Yvon 94),
only one change at a time is allowed, and
multiple changes are captured by successive
applications of morphological analogies (cas-
cade lnodel). However, there are cases in the
morphology of some languages where multiple
changes at the same tilne are mandatory, for
instance in semitic languages.

"One change at a time", is also found in (Na-
gao 84) for a translation method, called trans-
lation b 9 analogp , where the translation of an
input sentence is an adaptation of translations
of similar sentences retrieved from a data base.
The difficulty of handling multiple changes is
remedied by feeding the system with new exam-
ples differing by only one word commutation at
a time. (Sadler and Vendelmans 90) proposed a
difl'erent solution with all algebra on trees: dif-
ferences on strings are reflected by adding or
subtracting trees. Although this seems a more
convincing answer, the use of data bases would
resume, as would the multiplicity of domains.

Our goal is a true analogy-solver, i.c., an algo-
rithm which, on receiving three words as input,
outputs a word, analogical to the input, l:or
that, we thus have to answer the hard problem
of: (1) performing multiple changes (2) using
a unique data-type (words) (3) without dictio-
nary nor any external knowledge.

1.4 A n a l o g i e s on \Yards

We have finished our review of the problem an d
ended up with what was tlhe starting point of
our work. In linguistic works, analog:j is tie-
fined by Saussure, after Humboldt and B audoin
de Courtenay, as the operation by which, given
two forms of a given word, and only one form
of a second word, the missing form is coined 4,
"honor is to honorcm as 6rator is to oratorc,z"
noted 6r~t6rcm : 6rgitor = hon6rcm : honor.
This is the same definition as the one given by
Aristotle himself, "A is to B as C is to D", pos-
tulating identity of types for A, B, C, and D.

4Latin: orator (arMor, speaker) ~md bona," (honour)
nonfinative singular, 6rat6rcmt and honorcm ~ccusative
singular.

729

However, while analogy has been mentioned
and used, algorithmic ways to solve analogies
seem to have never been proposed, maybe be-
cause the operation, is so ':intuitive". We (Lep-
age & Ando 96) recently gave a tentat ive com-
putat ional explanation which was not always
valid because false analogies were captured, it
did not consti tute an algorithm either.

The only work Oll solving analogies on words
seems to be Copycat ((Hofstadter et al. 94)
and (Hoffman 95)), which solves such puzzles
as: abe : abbccc -- i j k : x. Unfortunately it
does not seem to use a truly dedicated algo-
r i thm, rather , following the AI approach, it uses
a formalisation of the domain with such fnnc-
tions as, ' :p rev ious in a l p h a b e t " , " rank in
a l p h a b e t " , e tc .

2 F o u n d a t i o n s o f t h e A l g o r i t h m

2.1 T h e F i r s t T e r m as a n Axis

(I tkonen and Hauki0ja 97) give a. prograln in
Prolog to solve analogies in sentences, as a refu-
tat ion of C, homsky, according to whom analogy
would, not be operational in syntax, because it
delivers non-grammatical sentences. That anal-
ogy would apply also to syntax, was advocated
decades ago by Hernlann Paul and Bloomfield.
C, homsky's claim is unfair, because it supposes
tha t analogy applies only on the symbol level.
I tkonen and Hankioja show that analogy, when
controlled by some structural level, does d.eliver
perfectly grammatical sentences. What is of
interest to us, is the essence of their method,
which is the seed for our algorithm:

Sentence D is formed by going through
sentences B a.nd C one element at ~ time
and inspecting the relations of each ele-
mere, to the structure of sentence A (plus
the part of sentence D that is ready).

Hence, sentence A is the axis against which sen-
tences B and C are colnpared, and by opposition
to which output sentence D is built.

r e a d e r : u~__~readfble = d o e r : x ~ x = .undoabIe

The method will thus be: (a) look for those
parts which are not common to A and B Oll one
hand, and not comlnon to A and C on the other
and (b) put them together in the right order.

2.2 C o m m o n S u b s e q u e n e e s

Looking for colnnlon subsequences of A and B
(resp. A and C) solves problem (o,) by comple-
mentat ion. (Wagner & Fischer 74) is a. method

to find longest common subsequences by com-
puting edit distance matrices, yielding the min-
ilnal number of edit operations (insertion, dele-
tion, substitntion) necessary to transform one
string into another.

For instance, the following matrices give the
distance between l ike and u n l i k e on one hand,
and between l i ke and k ~ m w n on the other hand,
in their right bot tom cells: d i s t (l i k e , u n l i k e) = 2

and dist(like, know.n) = 5

u n l i k e k 7~ o w n

l 1 2 2 3 4 5 l 1 2 3 4 5
i 2 2 3 2 3 4 i 2 2 3 4 5
k 3 3 3 3 2 3 k 2 3 3 4 5
e 4 4 4 4 3 2 e 3 3 4 4 5

2.3 S i m i l i t u d e b e t w e e n W o r d s

We call s i m i l i t u d e between A and B the length
of their longest common subsequence. It is also
equal to the length of A, minus the number of
its characters deleted or replaced to produce B.
This number we call pdist(A, B), because it is
a pseudo-distance, which can be computed ex-
actly as the edit distances, except that inser-
tions cost 0.

sire(A, B) = I A I - pdist(A, B)

For instance, p d i s t (u n l i k e , f ikc) = 2, while
p dist(/ike, u n l i k e) = O.

l i k e

u 1 1 1 1 u ll l i k e
n 2 2 2 2
l 2 2 2 2 l 1 1 0 0 0 0
i 3 2 2 2 i 2 2 1 0 0 0
k 4 3 2 2 k 3 3 2 1 0 0
e 5 4 3 2 e 4 4 3 2 1 0

Characters inserted into B or C may be left.
aside, precisely because they are those charac-
ters of B and C, absent from A, that we want
to assemble into the solution, D.

As A is the axis in the resolution of analogy,
graphically we make it the vertical axis around
which the computat ion of pseudo-distances
takes place. For instance, for l i k e : u n l i k e =
k l 2 o w ~ : x ,

n w o n k u n I i k e

1 1 1 1 1 l 1 1 0 0 0 ()
2 2 2 2 2 i 2 2 1 0 0 0
2 2 2 2 2 k 3 3 2 1 0 0
3 3 3 3 3 e 4 4 3 2 1 0

730

2.4 T h e Coverage Cons tra in t

It is easy to verify that there is no solution to an
analogy if some characters of A appear neither
in B nor in C. The contrapositive says that ,
for an analogy to hold, any character of A has
to appear in either B or C. Hence, the sum
of the similitudes of A with B and C must be
greater than or equal to its length: sire(A, B) +
s im(A,C) >_ I A I, or, equivalently,

I A I >- p d i s t (d , B) + p d i s t (d , C)

When the length of A is greater than the sum
of the pseudo-distances, some subsequences of
A are common to all strings in the same order.
Such snbsequences have to be copied into the
solution D. We call com(A, B, C, D) the sum
of the length of such subsequences. The del-
icate point is that this sum depends precisely
on the sohttion D being currently built by the
algorithm.

To sulnlnarise, for analogy A : B = C: D to
hold, the following constraint must be verified:

I A I = pdist(A, B)+pdis t (A, C)+com(A, B, C, 1))

3 T h e A l g o r i t h m

3.1 C o m p u t a t i o n o f Matr ices
Our method relies on the computation of two
pseudo-distance matrices between the three first
terms of the analogy. A result by (Ukkonen 85)
says that it is sufficient to compute a diagonal
band phts two extra, bands on each of its sides in
the edit distance matrix, in order to get the ex-
act distance, if the value of the overall distance
is known to be less than some given thresh-
old. This result applies to pseudo-distances,
and is used to reduce the computat ion of the
two pseudo-distance matrices. The width of the
extra bands is obtained by trying to satisfy the
coverage constraint with the value of the current
pseudo-distance in the other matrix.

proc compute~natrices(A, B, C, pdAB, pdAc)
compute pseudo-distances matrices with
extra bands of pdAB/2 and pdAc/2
i f]A I>_ p d i s t (A , B) + pdis t (A,C)

main component
else

compute_matrices(A, B, C,
tnax([A] - pdist(A, C),pdAB + 1),
lnax(] A] - pa in t (A ,B) ,pdac + 1))

end if
end proc compute_matrices

3.2 Main C o m p o n e n t

Once enough in the matrices has been com-
puted, the principle of the algorithm is to follow
the paths along which longest common subse-
quences are found, simultaneously in both ma-
trices, copying characters into the solution ac-
cordingly. At each time, the positions in both
matrices must be on the same horizontal line,
i.e. at a same position in A, in order to ensure
a right order while building the solution, 1).

Determining the patlhs is done by compar-
ing the current cell in the matrix with its three
previous ones (horizontal, vertical or diagonal),
according to the technique in (Wagner £~ Fis-
cher 74). As a consequence, paths are followed
from the end of words down to their begin-
ning. The nine possible combinations (three di-
rections in two matrices) can be divided into
two groups: either the directions are the same
in both matrices, or they are different.

The following sketches the al-
gorithm, corn(A, B,C, D) has been initialised
to: I A l - (pdist(A,B) + pdist(A,C)), iA, iB
and iv are the current positions in A. B and
C. dirAn (resp. dirac) is the direction of the
path in matrix A x B (resp. A x C) from the
current position. "copy" means to copy a char-
acter from a word at the beginning of 1) and to
move to the previous character in that word.

i f constraint(iA, iB, ic, corn(A, B, C, D))
c a s e : d i r A B --- d i r A c = d i a g o n a l

A[:A] = = C l i o]
decrement corn(A, B, C, D)

end if

c o p y B[iB] + C[ic,]- A[iA]:'
case: dirAB = dirAc = horizontal

copy c hath/min(pdist(A[1. . ia] , B[l ..iB]),
pdist(A[t..iA]. C[1..ic]))

case: dirAB = dirAc = vertical
move only in A (change horizontal line)

case : dirAB # dirAc
i f dirAB = horizontal

copy B[il~]

~In this case, we move in tile three words at tile
same time. Also, the character ari thnmtics factors,
in view of generalisations, different operations: if the
three current characters in A, B and C are equal, copy
this character , oiherwise copy that character from B
or C that is different from the one in A. If all current
characters are different, this is a faihtre.

bThe word with less simili tude with A is chosen, so
as to make up for its delay.

731

end

else if dirAB = vertical
move in A and C

else same thing by exchanging B and C
end if
if

3.3 Early Terminat ion in Case o f
Failure

Complete computat ion of both matrices is not
necessary to detect a failure. It is obvious when
a let ter in A does not appear in B or C. This
may already be detected before any matr ix com-
putat ion.

Also, checking the coverage constraint allows
the algorithm to stop as soon as non-satisfying
moves have been performed.

3.4 A n E x a m p l e
We will show how the analogy l ike: unlike =
known : x is solved by the algorithm.

The algorithm first verifies that all letters
of like are present either in unlike or known.
Then, the minimuln computat ion is done for the
pseudo-distances matrices, i.e. only the nfini-
real diagonal band is computed.

e k i l n u k n o w n

0 1 1 1 1 1
0 1 2 i 2 2

0 1 2 k 3 3
0 1 2 e 4 4

As the coverage constraiut ix verified, the
main component is called. It follows the paths
noted by values in circles in the matrices.

e k i l n u k n o w n

@ O O I O @
@ @ 1 2 i 2 @

1 2 k 3 ~)
@ 1 2 e 4 (~)

The succession of moves triggers the following
copies into the solution:

dirAB d i rAc
diagonal
diagonal
diagonal
diagonal

horizontal
horizontal
horizontal

c o p y
diagonal n
diagonal w
diagonal o
diagonal n

horizontal k
diagonal n
diagonal u

At each step, the coverage constraint being veri-
fied, finally, the solution x = unknown is ouptut .

4 P r o p e r t i e s and C o v e r a g e
4.1 Tr iv ia l Cases , M i r r o r i n g

Trivial cases of analogies are, of course, solved
by the algorithm, like: A : A = A : x ~ x =
A or A : A = C : x =~ x = C: Also, by
construction, A : B = C : x and A : C = B : x
deliver the same solution.

With this constructi_ on, mirroring poses no
problem. If we note A the mirror of word A,
then A : B = C : D ~ A : B = C : D .

4.2 Pref ix ing, Suffixing, P a r a l l e l
Infixing

Appendix A lists a numl)er of examples, actu-
ally solved by the algorithm, froln simple to
complex, which illustrate the algorithm's per-
formance.

4.3 Redupl icat ion and P e r m u t a t i o n
The previous form of the algorithm does not
produce reduplicotion. This would be neces-
sary if we wanted to obtain, for example, pin- • v.

rals in Indonesian°: orang: orang-orang =
burung : x ~ x = burung-bu, ru.ng . In this
case, our algorithm delivers, x = orang-burung,
because preference is given to leave prefixes un-
challged. However, the algorithna may be easily
modified so tha.t it applies repeatedly so as to
obtain the desired solution a.

Permutat ion is not captured by the algo-
rithm. An example (q with a and u.) in Proto-
semitic is: yaqtilu : yuqtilu. = qataI : qutal.

4.4 L a n g u a g e - i n d e p e n d e n c e / C o de-
d e p e n d e n c e

Because the present algorithm performs compu-
tation only on a symbol level, it may be applied
to any language. It is thus language indepen-
dent. This is fortunate, as analogy in linguistics
certainly derives from a more general psycho-
logical operation ((Gentner 83), (Itkonen 94)),
which seems to be universal among human be-
ings. Examples in Section A illustrate the lan-
guage independence of the algorithm.

Conversely, the symbols determine the gram~-
larity of the analogies computed. Consequently,
a commutat ion not reflected in the coding sys-
tem will not be captured. This may be illus-
t ra ted by a Japanese example in three different

5 orang (huInan being) singular, o,a,~g-oran 9 plural,
burung (bird).

6Similarly, it is easy to apply the algorithm in a
transducer-like way so tlud it modifies, by analogy, parts
of an input string.

732

codings: the native writing system, the Hep-
burn transcription and the official, strict rec-
omlnendation (kunrei).

I(anji /Kana: ~ 9 : ~ ~ = {~JJ < : x
Hepburn: m o t s u : m a c h i m o s u . = h a t a r a k u : x

Kunrei: m a t u : m a t i m a s u = h a t a r o k u : x

x = h a t a r a k i m a s u

The a.lgorithm does not solve the first two analo-
gies (solutions: {'~J 3 ~ ~ , h a t a r a k i m a s u) be-
cause it does not solve the elementary analogies,

: g = < : ~ and t s u : c h i = ku:k i , which
are beyond the symbol level r.

More generally speaking, the interaction of
analogy with coding seems the basis of a fre-
quent reasoning principle:

f (A) : f (B) = f (C) : x ¢> A:13==- C : . f - ' (x)

Only the first analogy holds on the symbol level
and. as is, is solved, by our algoritlun, f is an
encoding fllnction for which an inverse exists.
A striking application of this principle is the
resolution of some Copycat puzzles, like:

abc : abd = i j k : x ~ x = i j l

Using a binary ASCII representation, which re-
flects sequence in the alphabet, our algorithm
produces:

011000010110(1(11(/(111//(/011 : 0110000101.10001001100100

OllOlO010110101001101011 : X

--~ X : OllOlO01011010lO0110llO0 : /~]1

Set in tiffs way, even analogies of geometrical
type can be solved under a convenient represen-
tation.

An adequate description (or coding), with no
reduplication, is:

obj(big)&~. . o b j (s m a I t) c o b j (b i g) _ ob j (b ig)g~ :x
o b j = c i r c l c " & o b j = c i r c I c - o b j = s q u a r c

This is actually solved by our algorithm:

o b j (s m a l I) c obj(big)
x = & o b j = s q u . a r e

tOne could imagine extending the Mgori thm by
paramet r i s ing it with such predcfincd analogical
relations.

In other words, coding is the key to many
analogies. More generally we follow (Itkonen
and Haukioja 97) when they claim that analogy
is a.n operation against which formal represen-
tations should also be assessed. But for that , of
course, we needed an automatic analogy-solver.

Conclusion

We have proposed an algorithm which solves
analogies on words, i .e . when possible it coins
a fourth word when given three words. It re-
lies on the computation of pseudo-distances be-
tween strings. The verification of a constraint.
relevant for analogy, limits the computation of
matrix cells, and permits early termination in
case of faihlre.

This algorithm has bee]] proved to handle
]]zany different cases in many different lan-
guages. In particular, it handles parallel infix-
ing, a property necessary for the lnorphologica]
description of semitic languages. Reduplication
is an easy extension.

This algorithm is independent of any lan-
guage, but not coding-independent: it consti-
tutes a trial at inspecting how much can be
achieved using only pure COlnputation on sym-
bols, without any external knowledge. We are
inclined to advocate that lnuch in the lnatter of
usual analogies, is a. question of symbolic rep-
resentation, i .e . a question of encoding into a
for]]] solvable by a purely symbolic algorithm
like the one we proposed.

A E x a m p l e s

The following examples show actual resolution
of analogies by tile algorithm. They illustrate
what the algorithm achieves on real linguistic
examples.

A.1

Latin:

French:

Malay:

Chinese:

I n s e r t i o n or d e l e t i o n of pref ixes o r
suffixes

or(t toF(?D~ : OF(I tOY =]IO~OF(:DZ : X

X = h o n o r

r ~ p r c s s i o n : r ~ p r c s s i o n n a i r c = . rdac t ion : x

x = r d a c t i o n n a i r c

t i n g g a l : k, c t i n g g a I a n = d u d u k : x

x = k e d u d u k a n

x = ¢'~:~.

733

A.2 E x c h a n g e o f prefixes or suffixes

English: wolf : wolves = l c a f : x
x = leaves

Malay: kawan : m c n g a w a n i = kcliling : x
x = mcngcIi l ingi

Malay: keras : mcngcraskan = kcna : x
x = mcngcnakan

Polish: wys,vcdtcd : wysztad = poszcdted : x
x = posztad

A.3 Inf ixing and unflaut

Japanese: ~.,5 : ~@7o = ~7o : x
x = ~@Tz

German: Ian9 : tSngste = scharf : x
x = schgrfstc

German: f l ichcn : cr f loh = schIicflcn : x
x = cr schlofl

Polish: zgubiony : zgubicni = zmar tw iony : x
x = zmar tw ien i

Akkadian: ukag.gad : uktanag.gad = ugal~.gad : x
x = ugtanakgad

A.4 Paral le l infixing

Proto-semitic: yasriqu : sariq = 9anqimu : x
x = naqim

Arabic: huziIa : huzal = ..sudi'a : x
X ---- 8udo

Arabic: arsaIa : m u r s i h m = aslama : x
x = m u s l i m u n

R e f e r e n c e s

Robert I. Damper & John E.G. Eastman
Pronouncing Text by Analogy
Proceedings of C O L I N G - 9 6 , Copenhagen,
August 1996, pp. 268-269.

Dedre Gentner
Structure Mapping: A Theoretical Model for
Analogy
Cognit ivc 5kicncc, 1983, col. 7, no 2, pp. 155-
170.

Rogers P. Hall
Computational Approaches to Analogical
Reasoning: A Comparative Analysis
Art i f ic ia l Intell igence, Vol. 39, No. 1, May
1989, pp. 39-120.

Douglas Hofstadter and the Fhfid Analogies Re-
search Group
Fluid Concepts and Creative Analogies
Basic Books, New-York, 1994.

Robert R. Hoffman
Monster Analogies
A [Magazinc, Fall 1995, vol. 11, pp 11-35.

Esa Itkonen
Iconicity, analogy, and universal grammar
Journa l o f Pragmatics , 1994, col. 22, pp. 37-
53.

Esa Itkonen and Jussi Haukioja
A rehabilitation of analogy in syntax (and
elsewhere)
in And%s Kert6sz (ed.) Mctal inguis t ik im
Wandch die kognitivc Wcndc in Wis-
scnschafi, sthcoric und Linguis t ik l:rankfurt
a/M, Peter Lang, 1997, pp. 131-177.

Yves Lepage & Ando Shin-Ichi
Saussurian analogy: a theoretical account
and its application
P Ivcecdings of COLING-96 , Copenhagen,
August 1996, pp. 717-722.

Nagao Makoto
A Framework of a Mechanical Translation be-
tween Japanese and English by Analogy Prin-
ciple
in Arti f icial ~(H u m a n h~tclligcncc, Alick
Elithorn and Ranan Banerji eds., Elsevier
Science Publishers, NATO 1984.

Vito Pirelli & Stefano Federici
"Derivational" paradigms in morphonology
Proceedings of COLING-94 , Kyoto, August
1994, Vol. I, pp 234-240.

Victor Sadler and Ronald Vendelmans
Pilot implementation of a bilingual knowl-
edge bank
Procccdin.qs o f COLING-90 , Helsinki. 1990,
vol 3, pp. 449-451.

Eric Steinhart
Analogical Truth Conditions for Metaphors
Metaphor and Symbolic Activi ty , 1994, 9(3),
pp 161-178.

Esko Ukkonen
Algorithms for Approximate String Matching
h~formation and CbntroI, 64, 1985, pp. 100-
118.

Robert A. Wagner and Michael J. Fischer
The String-to-String Correction Problem
Journa l for the Associo t ion of Comput ing
Machinery , Vol. 21, No. 1, January 1974, pp.
168-173.

Francois Yvon
Paradigmatic Cascades: a Linguistically
Sound Model of Pronunciation by Analogy
P~vccedings of A C L - E A C L - 9 7 , Madrid, 1994,
pp 428-435.

734

U N A L G O R I T H M E P O U R LA
R I ~ S O L U T I O N D E S A N A L O G I E S

E N T R E M O T S
Y v e s L E P A G E

A L G O R Y T M D O R O Z S T R Z Y G A N I A
A N A L O G I I P O M I I ~ D Z Y S L O W A M I

Y v e s L E P A G E

R 6 s u m 6

Un rappel de travaux pr6c6dents sur l'analogie
en psychologie, en intelligence artificielle et en
tra itement automatique des langues pr6c6de la
pr6sentation d'un a lgorithme de r6solution, au
niveau morphologique, d'analogies entre roots.
Cet algorithme cr6e un quatrihme mot h partir
de trois roots donn6s, quand Cest possible. Par
exemple, &ant donn6s fablc, fabuleux et mira-
clc, l'algorithme er6e bien miraculcux. Des cas
bien plus difficiles sont correctement r6solus par
l'algorithme, en particulier, les cas d'infixation
multiple, n6cessaires pour rendre compte de la.
morph.ologie des langues s6mitiques. Nous don-
nons les caract6ristiques de l'algorithme et men-
tionnons quelques applicatio~xs possibles.

S t r e s z c z e n i e

Po opisaniu poprzednich prac nad zagadnie-
niem ana.logii w ramach psychologii, sztu-
cznej inteligencji oraz lingwistyki kompu-
terowej, pokazujemy algorytm do rozwi~za.nia
a.na.].ogii pomi~dzy slowalni ha. poziomie morfo-
logicznym. Algorytm ten tworzy, kiedy .jest to
mo~liwe, czwa.rty terrain na podstawie trzech
innych termindw. Na przyktad, je~eli podamy
dpicwa~, dpiewacz~:a i dziata~, algorytln stusznie
stworzy dziataczka. Algorytm ten. rozwi,'lzuje
bardziej skomplikowane problemy analogii, jak
w przypadku morfologii j¢zyk6w semitycznych,
gdzie w ,~rodku st6w mo~,e pojawi~, si 9 kilka przy-
rostk6w .jednoeze.4nie. Opisujemy algorytm i
jego mo~liwe zastosowania.

E I N A L G O R I T H M U S Z U R LC}SUNG
V O N W O R T - A N A L O G I E N

Y v e s L E P A G E Y v e s L E P A G E (;t,]~--5;:z)

Z u s a m m e n f a s s u n g
Nach einer Beschreibung friiherer Werke iiber
Analogie im Rahlnen yon I'sycholo-
gie, kiinstlicher Intelligenz und masehineller
Sprachverarbeitung, wird ein Algorithmus zur
LSsung von Wort-Analogien a.uf morphologi-
sober Ebene vorgeschlagen, l)ieser Algorith-
reus erzeugt, wen.n :mSglich, ein viertes Wort
aus drei gegebenen WSrtern. Znm Beispiel,
attssiihest wird alUS nehmen, ausnahmest und
schen abgeleitet. Auch komplexere FS~lle wer-
den korrekt behandelt, selbst in der Morpholo-
gie semitischer Sprachen, in denen pa.rallele
Infixung vorkommt. Der Algorithmus wird
beschrieben und mSgliche Anwendungen wer-
den aufgezeigt.

Z~o

735

