
A Multi-Neuro Tagger Using Variable Lengths of Contexts 

Qing Ma and H i t o s h i  Isahara 
Communicat ions  Research Laboratory  

Ministry of Posts and Telecommunicat ions 
588-2, Iwaoka, Nishi-ku, Kobe, 651-2401, Japan  

{qma, isahara}@crl.go.jp 

A b s t r a c t  

This paper presents a multi-neuro tagger that 
uses variable lengths of contexts and weighted 
inputs (with information gains) for part of 
speech tagging. Computer experiments show 
that it has a correct rate of over 94% for tag- 
ging ambiguous words when a small Thai corpus 
with 22,311 ambiguous words is used for train- 
ing. This result is better than any of the results 
obtained using the single-neuro taggers with 
fixed but different lengths of contexts, which 
indicates that the multi-neuro tagger can dy- 
namically find a suitable length of contexts in 
tagging. 

1 I n t r o d u c t i o n  

Words are often ambiguous in terms of their 
part of speech (POS). POS tagging disam- 
biguates them, i.e., it assigns to each word the 
correct POS in the context of the sentence. 
Several kinds of POS taggers using rule-based 
(e.g., Brill et al., 1990), statistical (e.g., Meri- 
aldo, 1994), memory-based (e.g., Daelemans, 
1996), and neural network (e.g., Schmid, 1994) 
models have been proposed for some languages. 
The correct rate of tagging of these models 
has reached 95%, in part by using a very large 
amount of training data (e.g., 1,000,000 words 
in Schmid, 1994). For many other languages 
(e.g., Thai, which we deal with in this paper), 
however, the corpora have not been prepared 
and there is not a large amount of training data 
available. It is therefore important to construct 
a practical tagger using as few training data as 
possible. 

In most of the statistical and neural network 
models proposed so far, the length of the con- 
texts used for tagging is fixed and has to be 

selected empirically. In addition, all words in 
the input are regarded to have the same rele- 
vance in tagging. An ideal model would be one 
in which the length of the contexts can be au- 
tomatically selected as needed in tagging and 
the words used in tagging can be given different 
relevances. A simple but effective solution is to 
introduce a multi-module tagger composed of 
multiple modules (basic taggers) with fixed but 
different lengths of contexts in the input and 
a selector (a selecting rule) to obtain the final 
answer. The tagger should also have a set of 
weights reflecting the different relevances of the 
input elements. If we construct such a multi- 
module tagger with statistical methods (e.g., n- 
gram models), however, the size of the n-gram 
table would be extremely large, as mentioned in 
Sec. 4.4. On the other hand, in memory-based 
models such as IGtree (Daelemans, 1996), the 
number of features used in tagging is actually 
variable, within the maximum length (i.e., the 
number of features spanning the tree), and the 
different relevances of the different features are 
taken into account in tagging. Tagging by this 
approach, however, may be computationally ex- 
pensive if the maximum length is large. Actu- 
ally, the maximum length was set ~t 4 in Daele- 
mans's model, which can therefore be regarded 
as one using fixed length of contexts. 

This paper presents a multi-neuro tagger 
that is constructed using multiple neural net- 
works, all of which can be regarded as single- 
neuro taggers with fixed but different lengths of 
contexts in inputs. The tagger performs P0S 
tagging in different lengths of contexts based on 
longest context priority. Given that the target 
word is more relevant than any of the words 
in its context and that the words in context 
may have different relevances in tagging, each 
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element of the input is weighted with informa- 
tion gains, i.e., numbers expressing the average 
amount of reduction of training set informa- 
tion entropy when the POSs of the element are 
known (Quinlan 1993). By using the trained re- 
suits (weights) of the single-neuro taggers with 
short inputs as initial weights of those with long 
inputs, the training time for the latter ones can 
be greatly reduced and the cost to train a multi- 
neuro tagger is ahnost the same as that  to train 
a single-neuro tagger. 

2 P O S  T a g g i n g  P r o b l e m s  

Since each input Thai text can be segmented 
into individual words that can be further tagged 
with all possible POSs using an electronic Thai 
dictionary, the POS tagging tasks can he re- 
garded as a kind of POS disarnbiguation prob- 
lem using contexts as follows: 

I P T  : ( ipt_ll, . . . , ipt_ll , ipt_t,  ipt_rl  , . . . , ipt_r~ ) 

O P T  : P O S _ t ,  (1) 

where ipt_t is the element related to the possible 
POSs of the target word, ( i p t _ l l , . . . ,  ip t_l l )  and 
( i p t _ r l , . . . , i p t _ r r )  are the elements related to 
the contexts, i.e., the POSs of the words to the 
left and right of the target word, respectively, 
and P O S _ t  is the correct POS of the target word 
in the contexts. 

3 I n f o r m a t i o n  G a i n  

Suppose each element, ipt_x (x  = l i , t ,  or rj), 
in (1) has a weight, w_x,  which can be obtained 
using information theory as follows. Let 5' be 
the training set and Ci be the i t h  c lass ,  i.e., 
the i th  POS (i = 1 , . . - ,  n, where n is the total 
number of POSs). The entropy of the set S, 
i.e., the average amonnt of information needed 
to identify the class (the POS) of an example in 
S,  is 

f r e q ( C i ,  S) f r e q ( C i ,  S )  
in f o( S ) 

ISl × ISl )' 
(2) 

where 15'[ is the number of examples in S and 
f r e q ( C i ,  S )  is the number of examples belong- 
ing to class Ci. When 5' has been partitioned 

to h subset Si (i = 1 , . . . , h )  according to tile 
element ipt_~:, the new entropy can be found as 
the weighted sum over these subsets, or 

i n f o ~ ( S )  = ~ x i n f o ( S i ) .  (:3) 
i=1 

Thus, the quantity of information gained by this 
partitioning, or by knowing the POSs of element 
ip t~: ,  can be obtained by 

g a i n ( x )  = i n f o ( S )  - i n f o x ( S ) ,  (4) 

which is used as the weight, w_x,  i.e., 

4 M u l t i - N e u r o  T a g g e r  

4.1 S i n g l e - N e u r o  T a g g e r  

Figure 1 shows a single-neuro tagger (SNT) 
which consists of a 3-layer feedforward neural 
network. The SNT can disambignate the POS 
of each word using a fixed length of the con- 
text by training it in a supervised manner with 
a well-known error back-propagation algorithm 
(for details see e.g., Haykin, 1994). 

)PT 

i p t  I t ...... i p t  11 i p t _ t  i p t  r t ..... i p t  r r 

I P T  

Fig. 1. The single-neuro tagger (SNT). 

When word x is given in position y (y = t, li, 
or rj), element i p t - y  of input I P T  is a weighted 
pat tern defined as 

ipt_y = w_y . (exa ,ex2, ' "  ,cx~), 

= (Ixl, 5 , > . - . ,  Ix ) (61 

where w_y is the weight obtained in (5), n is 
the total number of POSs defined in Thai, and 
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I~i = w_y.exi (i = 1 , . . . ,n ) .  I f x  is a k n o w n  
word, i.e., it appears in the training data, each 
bit ezi is obtained as follows: 

exi = Prob(POSilx). (7) 

Here the Prob(POSilx) is the prior probability 
of POSi that the word x can be and is estimated 
from the training data  as 

Prob(POSi l x ) -  IPOSi,xl 
Ixl ' ( 8 )  

where ]POSi,x I is the number of times both 
POSi and x appear and Ixl is the number of 
times x appears in all the training data. If x is 
an unknown word, i.e., it does not appear in the 
training data, each bit e~i is obtained as follows: 

± if POSi is a candidate 
= ~ '  (9) e~i 0, otherwise, 

where n~. is the number of POSs that  the word 
x can be (this number can be simply obtained 
from an electronic Thai dictionary). The OPT 
is a pattern defined as follows: 

O P T  = (Ol,02,' ' ' ,On). (10) 

The OPT is decoded to obtain a final result 
R S T  for the POS of the target word as follows: 

R S T  = f POSi, i f O i =  1 & Oj = 0 f o r j ¢ i  
[ Unknown. otherwise 

(11) 
There is more information available for con- 

structing the input for the words on the left be- 
cause they have already been tagged. In the 
tagging phase, instead of using (6)-(9), the in~ 
put may be constructed simply as follows: 

ipt_li(t) = w-li. OPT(¢ - i), (12) 

where t is the position of the target word in a 
sentence a n d i =  1 , 2 , . . . , l f o r  t - i >  0. How- 
ever, in the training process the output  of the 
tagger is not correct and cannot be fed back to 
the inputs directly. Instead, a weighted average 
of the actual output  and the desired output  is 
used as follows: 

ipt_li(t) = w_Ii.(woPT.O PT( t - i )+WDEs.DES) ,  
(13) 

where D E S  is the desired output  

D E S = ( D 1 , D 2 , . . . , D n ) ,  (14) 

whose bits are defined as follows: 

1 if POSi is a desired answer 
Di = 0. otherwise 

(15) 
and wop T and WDKS are respectively defined as 

and 

J~O B J  
W O P T -  EACT (16) 

WDES = 1 - w O P T ,  (17) 

where EoBj  and EACT are the objective and 
actual errors, respectively. Thus, the weighting 
of the desired output  is large at the beginning of 
the training, and decreases to zero during train- 
ing. 

4.2 M u l t i - N e u r o  T a g g e r  

Figure 2 shows the structure of the multi-neuro 
tagger. The individual SNTi has input IPTi 
with length (the number of input elements: l + 
1 + r) l(IPTi), for which the following relations 
hold: l(IPTi) < I(IPTj) for i < j .  

i 
i 

~ SNT @ - -  
1 = 

I o~2 ~ ]  IPT, o 

o 

.._2_2 

I.~ 7 ~"I 
', ! IPT m ~ Ol~T., ~ - ~  

Fig. 2. The multi-neuro tagger. 

When a sequence of words (word_ll, ..., 
word_f1, word_t, zvord_rl, ..., word_r~.), which 
has a target word word_t in the center and a 
maximum length I(IPTo~), is inputed, its subse- 
quence of words, which also has the target word 
word_t in the center and length l(IPTi), will be 
encoded into IPTi in tile same way as described 
in the previous section. The outputs OPTi (for 
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i = 1 , . . . ,  m) of the single-neuro taggers are de- 
coded into RSTi by (11). The RSTi are next 
inputed into the longest-context-priority selec- 
tor which obtains the final result as follows: 

RSTi, if RSTj  = Unknown 
(tbr j > i) 

PO%_t = and RS~I~ y~ Unknown 

Unknown. otherwise 
(18) 

This means that  the output  of the single-nenro 
tagger that  gives a result being not unknown 
and has the largest length of input is regarded 
as a final answer. 

4.3  T r a i n i n g  

If we use the weights trained by the single-neuro 
taggers with short inputs as the initial values of 
those with long inputs, the training time for the 
latter ones can be greatly reduced and the cost 
to train multi-neuro taggers would be ahnost 
the same as that  to train the single-neuro tag- 
gers. Figure 3 shows an example of training a 
tagger with four input elements. The trained 
weights, wl and w2, of the tagger with three 
input elements are copied to the corresponding 
part of the tagger and used as initial values for 
its training. 

M 

• 422 

L__]~I ~yer 

~w 
42] 

II * "  II *,-', ! 
Fig. 3. ttow to train single-neuro tagger. 

4.4  F e a t u r e s  

Suppose that  at most seven elements are 
adopted in the inputs for tagging and that  there 
are 50 POSs. The n-gram models must es- 
t imate 50 r = 7.8e + 11 n-grams, while the 
single-neuro tagger with the longest input uses 

only 70,000 weights, which can be calculated 

by nipt • nhid + nhid • ltopt where ?~,ipt, ~Zhid, and 
nopt are, respectively, the number of units in 
the input, the hidden, and the output  layers, 
and nhid is set to be nipt/2. That  neuro models 
require few parameters may offer another ad- 
vantage: their performance is less affected by a 
small amount  of training data  than that  of the 
statistical methods (Schmid, 1994). Neuro tag- 
gers also offer last tagging compared to other 
models, although its training stage is longer. 

5 E x p e r i m e n t a l  R e s u l t s  

The Thai corpus used in tile computer  experi- 
ments contains 10,452 sentences that  are ran- 
domly divided into two sets: one with 8,322 
sentences for training and another with 2,130 
sentences for testing. The training and test- 
ing sets contain, respectively, 22,311 and 6,7117 
ambiguous words that  serve as more than one 
POS and were used for training and testing. 
Because there are 47 types of POSs in Thai 
(Charoenporn et al., 1997), n in (6), (10), and 
(14) was set at 47. The single neuro-taggers 
are a-layer neural networks whose input length, 
I ( IPT)  (=l  + 1 + r), is set to a-7 and whose size 
is p x e × n, where p = n × I ( IPT) .  The multi- 2 
neuro tagger is constructed by tive (i.e., m = 5) 
single-neuro taggers, SNTi (i = 1 , . . - , 5 ) ,  in 
which I(IPTi) = 2 + i. 

Table 1 shows that  no mat ter  whether  the 
information gain (IG) was used or not, the 
multi-neuro tagger has a correct rate of over 
94%, which is higher than that  of any of the 
single-neuro taggers. This indicates that  by us- 
ing the multi-neuro tagger the length of the con- 
text need not be chosen empirically; it can be 
selected dynamically instead. If we focus on the 
single-neuro taggers with inputs greater than 
four, we can see that the taggers with informa- 
tion gain are superior to those without informa- 
tion gain. Note that  the correct rates shown in 
the table were obtained when only counting the 
ambiguous words in the testing set. The correct 
rate of the multi-neuro tagger is 98.9% if all the 
words in the testing set (the ratio of ambigu- 
ous words was 0.19) are counted. Moreover, al- 
though the overall performance is not improved 
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Table 1. Results of POS Tagging for Testing Data 
Tuggers "single-neuro" "multi- neuro" 
l(IPTi) 3 4 5 6 r 
with IG 0.915 0.920 0.929 0.930 0.933 0.943 
without IG 0.924 0.927 0.922 0.926 0.926 0.941 

much by adopting the information gains, the 
training can be greatly speeded up. It takes 
1024 steps to train the first tagger, SNT1, when 
the information gains are not  used and only 664 
steps to train the same tagger when the infor- 
mation gains are used. 

Figure 4 shows learning (training) curves in 
different cases for the single-neuro tagger with 
six input elements. Thick line shows the case 
in which the tagger is trained by using trained 
weights of the tagger with five input elements us 
initial values. The thin line shows the case in 
which the tagger is trained independently. The 
dashed line shows the case in which the tagger 
is trained independently and does not use the 
information gain. From this figure, we know 
that the training time can be greatly reduced 
by using the previous result and the information 
gain. 

0.025 

0.02 

~0.015 

0.01 

0.005 

I.earning using previous result 

- -  Learning with IG 

....... Learning without IG 

0 10 20 30 40 50 60 70 80 90 

N u m b e r  o f  l ea rn ing  s teps  

Fig. 4. Learning curves. 

100 

6 C o n c l u s i o n  

This paper described a multi-neuro tagger that  
uses variable lengths of contexts and weighted 
inputs for part of speech tagging. Computer  ex- 
periments showed that the multi-neuro tagger 
has a correct rate of over 94% for tagging am- 
biguous words when a small Thai corpus with 
22,311 ambiguous words is used for training. 
This result is better than any of the results oh- 

tained by the single-neuro tuggers, which indi- 
cates that  that the multi-neuro tagger can dy- 
namicully find suitable lengths of contexts for 
tagging. The cost to train a multi-neuro tag- 
ger was almost the same as that to train a 
single-neuro tagger using new learning methods 
in which the trai~led results (weights) of the pre- 
vious tuggers are used as initial weights for the 
latter ones. It was also shown that  while the 
performance of tagging can be improved only 
slightly, the training time can be greatly re- 
duced by using information gain to weight input 
elements. 
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