
A t a b u l a r i n t e r p r e t a t i o n o f a c lass o f 2 - S t a c k A u t o m a t a

E r i c V i l l e m o n t e d e la C l e r g e r i e
I N R I A - R o c q u e n c o u r t - B .P . 105

78153 Le C h e s n a y C e d e x , F R A N C E
Eric. De_La_Clergerie@inr i a. fr

Miguel Alonso Pardo
U n i v e r s i d a d de L a C o r u f i a

C a m p u s de E lv i / i a s / n
15071 L a C o r u f i a , S P A I N

a l 0 n s 0 0 d c , f i . u d c . e s

A b s t r a c t

The paper presents a tabular interpretation for a
kind of 2-Stack Automata. These automata may be
used to describe various parsing strategies, ranging
from purely top-down to purely bottom-up, for LIGs
and TAGs. The tabnlar interpretation ensures, for
all strategies, a time complexity in O(n ~) and space
complexity in O(n ~) where n is the length of the
input string.

I n t r o d u c t i o n

2-Stack automata [2SA] haw~' been identified as pos-
sible operational devices to describe parsing strate-
gies for Linear Indexed Grammars [LIG] or Tree Ad-
joining Grammars [TAG] (mirroring the traditional
use of Push-Down Automata [PDA] for Context-
Free Grammars [CFG]). Different variants of 2SA
(or not so distant EInbedded Push-Down Automata)
have been proposed, some to describe top-down
strategies (Vijay-Shanker, 1988; Becket, 1994), some
to describe bottom-up strategies (Rambow, 1994;
Nederhof, 1998; Alonso Pardo et al., 1997), but none
(that we know) that are able to describe both kinds
of strategies.

The same dichotomy also exists in the different
tatmlar algorithms that has been proposed for spe-
cific parsing strategies with complexity ranging from
O(n (;) for bottom-up strategies to O(n 9) for prefix-
valid top-down strategies (with the exception of a
O(n a) tabular interpretation of a prefix-valid hybrid
strategy (Nederhof, 1997)). It must also be noted
that the different tabular algorithms may be diffi-
cult to understand and it is often unclear to know if
the algorithms still hold for different strategies.

This paper overcomes these problems by (a) in-
troducing strongly-driven 2SA [SD-2SA] that may
be used to describe parsing strategies for TAGs
and LIGs, ranging from purely top-down to purely
bottom-up, and (b) presenting a tabular interpre-
tation of these automata in time complexity O(n6)
and space complexity O(n~).

The tabular interpretation follows the principles
of Dynamic Programming: the derivations are bro-
ken into elementary sub-derivations that may (a) be

combined in different contexts to retrieve all possi-
ble derivations and (b) be represented in a compact
way by items, allowing tabulation.

The strongly-driven 2SA are introduced and moti-
vated in Section 1. We illustrate in Sections 2 and 3
their power by describing several parsing strategies
for LIGs and TAGs. Items are presented in Sec-
tion 4. Section 5 lists the rules to combine items aim
transitions and establishes correctness theorems.

1 S t r o n g l y - d r i v e n 2 - S t a c k A u t o m a t a

2SA are natural extensions of Push-Down Automata
working on a pair of stacks. However, it is known
that unrestricted 2SA have the power of a Turing
Machine. The remedy is to consider asymmetric
stacks, one being the Master Stack MS where most
of the work is done and the other being tile Auxiliary
Stack AS mainly used for restricted "bookkeeping".

The following remarks are intended to give an idea
of the restrictions we want to enforce. The tirst ones
are rather standard and may be found nnder differ-
ent forms in the literature. The last one justifies the
qualification of "strongly-driven" for our automata.

[Session] AS should actually be seen as a stack of
session stacks, each one being associated to a
session. Only the topmost session stack may
be consulted or modified. This idea is closely
related to the notion of Embedded Push-Down
Automata (Rainbow, 1994, 96-102).

[Linear i ty] A session starts in mode write w and
switches at some point in mode erase e. In
mode w (resp. e), no element can be popped
from (resp. pushed to) the master stack MS.
Switching back h'om e to w is not allowed. This
requirement is related to linearity because it
means that a same session stack is never used
twice by "descendants" of an element in MS.

[Soft Sess ion Exi t] Exiting a session is only possi-
ble when reaching back, with an empty session
stack and in mode erase, the MS element that
initiated tile session.

[Driving] Each pushing on MS done in write mode
leaves some mark in MS about the action that

1333

/W \ W

/E "NE
I I I I

-*W ~ W Write Mode

- - /
. , { , _ - . - . _

-*E
I I I I I I I I I I I I I I I ,

Master stack

Figure 1: Representation of transitions and derivations

took place on the session stack. The popping
of this mark (in erase mode) will guide which
action should take place on the session stack.
In other words, we want the erasing actions to
faithfully retrace the writing actions.

Formally, a SD-2SA ,4 is specified by a tuple
(E, A/t, X, $0, $f, O) where E denotes the finite set of
terminals, .£4 the finite set of master stack elements
and A' the finite set of auxiliary stack elements. The
in i t symbol $0 and f inal symbol $1 are distinguished
elements of A4. ® is a finite set of transitions.

The master stack M S is a word in (:DAd)* where
T) denotes the set { /2 , ' .~ , -% ~} of a c t i on m a r k s
used to remember which action (w.r.t. the auxiliary
stack AS) takes place when pushing the next master
stack element. The empty master stack is noted e
and a non-empty master stack 51A1 . . . 5~An where
A~ denotes the topmost element.

The meaning of the action marks is:

/ Pushing of an element on AS.

Popping of the topmost element of AS.

--* No action on AS.

Creation of a new session (with a new empty
session stack on AS).

The auxiliary stack AS is a word of (/CA'*)* where
/C = { ~ w , ~ e } is a set of two elements used to

delimit session stacks in AS. Delimiter ~ w (resp.
~ e) is used to start a new session from a session
which is in writing (resp. erasing) mode. The empty
auxiliary stack is noted c.

Given some input string Xl . . . x] E E*, a configu-
ration of .A is a tuple (m, u, E, ~) where m E {w, e}
denotes a mode (writing or erasing), u a string posi-
tion in [0, f] , E the master stack and (the auxiliary
stack. Modes are ordered by w -~ e to capture the
fact that no switching from e to w is possible. The
initial configuration of A is (w, 0, ~$0, ~ w) and the
final one (e, f , ~ $ f , ~ w) .

A transition is given as a pair (p, E, () ~ (q, O, 0)
where p, q are modes (or, with some abuse, variables
ranging over modes), z in E*, E and @ suffixes of

master stacks in M(DM)*, and ~, 0 suffixes of aux-
iliary stacks in X*(K:X*)* = (XU/C)*. Such a transi-
tion applies on any configuration (p, u, ~I/E, ~() such
that x,,+l . . . x , = z and returns (q, v, ~®, ~/~0).

We restrict the kind of allowed transitions:

S W A P (p, A, ~) ~ (q, B, ~) with p _ q and either
E K: ("session bottom check") or (= e ("no

AS consultation") .

/ - W R I T E (w, A, e) ~ (w, A / B , b)

/ - E R A S E (e, A / B , a) ~ (e, D, e)

- * - W R I T E (w, A, e) ~-% (w, A--~B, e)

- -+ -ERASE (e, A-*B, e) ~ (e, C, e)

~ - W R I T E (m, A, e) ~ (w, A ~ B , ~'~)

~ - E R A S E (e , g ~ B , ~ TM) ~ (m,V,e)

" , , - W R I T E (w, A, a) ~ (w, A'NB, e)

" ~ - E R A S E (e, A'NB, e) ~L~ (e, C, e)

Figure 1 graphically outlines the different kinds
of transitions using a 2D representation where tile
X-axis (Y-axis) is related to the master (resp. aux-
iliary) stack. Figure 1 also shows the two forms of
derivations we encounter (during a same session).

2 U s i n g 2 S A t o p a r s e L I G s

Indexed Grammars (Aho, 1968) are an extension of
Context-free Grammars in which a stack of indices
is associated with each non-terminal symbol. Linear
Indexed Grammars (Gazdar, 1987) are a restricted
form of Indexed Grammars in which the index stack
of at most one body non-terminal (the child) is re-
lated with the stack of the head non-terminal (the
father). The other stacks of the production must
have a bounded stack size.

Formally, a LIG G is a 5-tuple (VT, VN, S, VI, P)
where VT is a finite set of terminals, VN is a finite
set of non-terminals, S E VN is the start symbol,
IZ~ is a finite set of indices and P is a finite set of
productions. Following (Gazdar, 1987) we consider
productions in which at most one element can bc
pushed on or popped from a stack of indices:

1334

[Termina l] A~,0[] --4 a~ where a~ G VT U {e},

[POP] A~,0[oo] --* A~,, [] . . . A<a[oowl. . . A~,,,~ []

[P U S H] A~,0[ooT] ~ A~,, [1 . . . Ak,d[OO]... A},,,~ [1

[ItOR] &,o[OO l -~ A~,,[] ...&.,,[oo]...A~,,,~[]

To each production k of type PUStt , P O P or
HOR, we associate a characteristic tuple t(k) =
(d, 5, (t, ¢/) where d is the position of the child and
the other arguments given by the following table:

tL _,v Type 1 --aLe-L
S H I . /] e L ~

L £ ° r LbA_ _IzJ
L HoR I-+1 1

We introduce symbols Vk,i as a shortcut for dotted
productions [Ak,o-eAk,1 . . . Ak,i • Ak,i+l . . . Ak,,~,].

In order to design a broad class of parsing strate-
gies ranging from pure top-down to pure bot tom-up,
we parameterize the au tomaton to be presented by
a call projection ---+ from V to V ~°~u and a return
projection +-- from l) to l) ~ t where 1) = I/N O 171
and Y ~al and y~¢t are two sets of elements. We re-
quire F ~au N l) ''~t = 0 and (--*, *--) to be invertible,

i .eVX, Y e] 2 , (Z , ~) = (Y , Y) ::> x = Y
The projections extend to sequences by taking

X 1 . . . ~,~ = ~11... ~,~ and -U = e (similarly for ~--).
Given a LIG G and a choice of projections, we

define the 2SA A(G, --+, *--) = (Vv , M , X, ~ , ~-, O)

transitions are tmilt using the following rules.

• Cal l /Return of a non child

) C A L L : (m,V~, i ,e) ~ (w, --+ "~
RET: (e, V k , i ~ - l , ~ ") I ~ (/~,Vk,i+I,E)

• Cal l /Return of a child for t(k) = (i + 1, (5, a, fl).

CALL(S) : (w, V~,~, -&+) ~ (w, Vk,,6Ak,~+,, ~)

R E T (5) : (e, V k , , 5 ~ , ~) ~ (e, Vk,i+l, W)

• Product ion Selection
S E L : (w, Ak,o, e) ~-+ (w, Vk,0, e)

• Product ion Publishing

P U B : (e, Vk,n, ,e) ~ (e , ~ , e)

• Scanning (for terminal p roduc t ions)

S C A N : (w, Ako, "~ ~ ~ ~"~) , ~)~--~(e, Aa,0,

The reader m a y easily check that el(G, "--+, e--)
recognizes L(G). The choice of the call and r e t u r n

elenmnts for the M S (~ , / and ~ , i) and the AS
(--~ and ~ ') defines a parsing strategy, by controlling
how information flow between the phases of predic-
tion and propagation. The following table lists the
choices corresponding to the main parsing strategies
(but others are definable).

---+ ~ .___+

Top-Down A _L h' J
Bot tom-Up ± A' ± 7

Earley A A' 7 7'

It is also worth to note that the descrip-
tion of A (G , - ~ , ~--) could be simplified. In-
deed, for every configuration (m , u , E , () deriv-
able with A(G,--+,+--), we can show that ~Z =
~Vk,,i,/~l . . .Vk,, , i , 5,~X, and that b t only depends
on Vkz,,~. Tha t means that we conld use a master
stack without action marks, these marks being im-
plicitly given by the elements Vk,~.

3 U s i n g 2 S A t o p a r s e T A G s

Tree Adjoining Gramlnars axe a extension of CFG
introduced by Joshi ill (Joshi, 1987) that use
trees instead of productions as pr imary represent-
ing structure. Formally, a TAG is a 5-tuph; G =
(VN, VT, S , I , A) , where VN is a finite set of non-
terminal symbols, V T a finite set of terminal sym-
bols, S thc axiom of the grammar , I a finite set of
initial trees and A a finite set of au:riliary trees. I U A
is the set of elememtary trees. Internal nodes arc la-
beled by non-terminals and leaf nodes by terminals
or e, except for exactly one leaf per mlxiliary tree'
(the foot) which is labeled by the santo non-terminal
used as label of its root node.

New trees are derived by adjoining: let be c~ a
tree containing a node v labeled by A and let be
fl an auxiliary trec whose root and foot nodes arc
also labeled by A. Then, tile adjoining of fl at the
adjunction node v is obtained by excising the subtree
ct~ of a with root v, attaching fl to v and attaching
the excised subtree to the foot of fl (See Fig. 2).

pine

Figure 2: Traversal of an adjunction

An elementary tree a may be represented by a
set P(c~) of context free productions, each one being
either of the form

• 12k, 0 --4 b ' k , l . . , lJk,r~t. ~ w h e r e vk, o d e n o t e s s o n i c

non-leaf node k of a and v~,~ the ith son of k.

1335

• uk,0 -+ ak, where v/¢,0 denotes some leaf node k
of a with terminal label ak.

As done for LIGs, we introduce symbols Vk,i
to denote dotted productions and consider pro-
jections ---+ and +- to define th__e+e ~_~ameterized
2SA .A(G, -+, +-) = (VT, .Ad, .Ad, u0,0, uo,0, O) where

Ad = {Vk,i} U {uk,i} U {uk,i}. The transitions are
given by the following rules (and illustrated in Fig-
ure 2).

• Call / Return for a node not on a spine. The
call starts a new session, exited at return.

C A L L : (rn, V k , i , e) ~ (w, V k , i ~ , ~ m)
R E T : (e, V k , i ~ , ~ ") ~ (m, Vk,i+l,e)

• Call / Return for a node ukd+a on a spine.
The adjunction stack is propagated un-modified
along the spine.

S C A L L : (w, Vk,i, e) ~ (w, Vkd--~uk,i+;, e)
S R E T : (e, V k , ~ , c) ~ (e, V~,i+l, e)

• Call / Return for an adjunction on node uk,0.
The computation is diverted to parse some ac-
ceptable auxiliary tree fl (with root node rz) ,
and a continuation point is stored on the auxil-
iary stack.

A C A L L : (w, uk,---~, e) H (W, ~,0./ 'Vfi, Vk,0)
- - - - - e t - - - - -

A R E T : (e, uk,o/~-fi,V~m~) ~ (e,u~,0,e)

• Call / Return for a foot node ffl. The continu-
ation stored by the adjunction is used to parse
the excised subtree.

F C A L L : (w, ~ , A) ~ (w, f~z'NA, e)
_c-:--

F R E T : (e, fa".~A, ~) ~ (e, fZ, A)
Note: These two transitions use a variable A
over Ad. This is a slight extension of 2SA that
preserves correctness and complexity.

• Production Selection

S E L : (w, ~ e) ~ (w , V ~ , o e) l] k , O ,

• Production Publishing

P U B : (m , V ~ , ~ , e) H (e,v~,0,e)

• Scanning

S C A N : (w,u~,0, "~ a~)

Different parsing strategies can be obtained by
choosing the call (u~--~,,) and r e t u r n (u~,~--i) elements:

Strategy --~ ~-

prefix-valid Top-Down u 3_
Bottom-Up _L u'

prefix-valid Earley u u'

Non prefix-vMid variants of the top-down and
Earley-like strategies can also be defined, by tak-
ing ~ = 3_ and Ffi = r~ for every root node rp of

an auxiliary tree fl (the projections being unmodi-
fied on the other elements). In other words, we get
a full prediction on the context-fi'ee backbone of G
but no prediction on the adjunctions.

4 I t e m s

We identify two kinds of elementary deriva-
tions, namely C o n t e x t - F r e e [CF] and e s c a p e d
C o n t e x t - F r e e [xCF] derivations, respectively rep-
resented by CF and xCF items. An item keeps the
pertinent information relative to a derivation, which
allows to apply the sequence of transitions associ-
ated with the derivation in different contexts.

Before presenting these items, we introdm:e the
following classification about derivations.

A derivation (p,u, EA,~)I-fE (q,v, O, O) is said
r i g h t w a r d if no element of E is accessed (even for
consultation) during the derivation and if A is only
consulted. Then EA is a prefix of O.

Similarly, a derivation (p, u, E, ~)1-~ (q, v, @, 0) is
said u p w a r d if no element of ~ is accessed (even for
consultation). Then (is a prefix of 0.

We also note w[q/p] the prefix substitution of p by
q for all words w,p, q on some vocabulary such that
p is prefix of w.

4.1 C o n t e x t - F r e e D e r i v a t i o n s

A C o n t e x t - F r e e [CF] derivation only depends on
the topmost element A of the initial stack MS. That
means that no element of the initial AS and no ele-
ment of MS below element A is needed:

:k

(o, u, EA, (w, OB, 0) I- ;f w,

where

• dl and did2 are both rightward and upward.

• d2 is rightward.

• either (6 ~: ~ , o = w, and c e X) or
(6 = and c =

For such a derivation, we have:

P r o p o s i t i o n 4.1 For all prefix stacks E', ~,

(°,u,'='A,~ ') I*~ (w,v,(9'B,O') dl

w, d2

where ®' = o[E ' /~] and O' = 0[~'/~].

The proposition suggests representing the CF
derivation by a CF item of the form

ABS(Tm

where A = (u, A) and B = (v, B) are m ic ro config-
urations and C = (w, C, c) a min i configuration.

1336

B ' C

CF(-+) I t e m

xCF(--+) I t e m r~ ,
I I I I I I I I

:C

C F (/) or C F (~) I t e m

A ~ X x
x C F (/) I t e m e; " "

I I I I I I

B

CF(",,~) I t e m B

A xC F(',~) I t e m

I I ' I I I I I ,

Figure 3: Items Shapes

4.2 Escaped C o n t e x t - F r e e D e r i v a t i o n s

An e s c a p e d C o n t e x t - F r e e [xCF] derivation is al-
most a CF derivation, except for an escape sub-
derivation that accesses deep elements of AS.

(w, u, EA, ~) l ~-~-~ (w,v,6)B,O)

I~ (w,,, cD, (d)
I~-~ (e, t, ,~D"...~E, ¢)

I~ (e, w, oB6c, Ce)

where

• dl and did2 are both rightward and upward.

• d 2 and dx are rightward.

• da is Ul)ward.

• 6)k ~ and d, cE A'.

P r o p o s i t i o n 4.2 For all prefix stacks -~ and ~',
stack Ct, and rightward derivation

• 'D, ('d)[~x , (e, t,) 'D '~E , ¢') (w,

where '~' = 45[E'/E], we have

(w , ~ , E ' A , () I - - dl

d~

I ~->-,
I-*--
da

(w, v, o [~'/F.]B, 0[(/(])
(w, s, e [E ' /E]D, (d)

(e, t, g'[E' /EID'NE, ¢')

(e, ~,, O[-='/=]B~C, ¢'e)

The proposition suggests representing the xCF
derivation by an xCF item of the form

AB~5119 EIOe

where A = {u,A>, B = (v,B>, D = (s,D,d}, E =
<t,E) and O = (w,C,c>.

In order to homogenize notations, we also use
the alternate notation AB6[oo]Cm to represent CF
item A/38(~m, introducing a dummy symbol o.

The specific forms taken by CF and xCF items for
the different actions (5 arc outlined in Figure 3.

5 C o m b i n i n g i t e m s a n d t r a n s i t i o n s

We provide the rules to combine items and transi-
tions in order to retrieve all possible 2SA derivations.

These rnles do not explicit the scanning con-
straints and suppose that the string z may be read
between positions w and k of the input string. They
use holes * to denote slots that not need be con-
suited. For any mini configuration A = {u, A, a), we
note A° = (u, A) its micro projection.

[--+--WRITE] r = (w, C, e) ~ (w, C-+F, e)

A ~ [o o I O w = ~ AG'°-+[oo]Fw

where G' = <w, C, c), and /~ = {}, F, c>.

[/ - - W R I T E] ~ = (w, C, ~) ~ (w, C / F , I)

(1)

A**[oolg:w =2=> 6 ,0 ~,o / [o o 1 F w

whore O = <~,, C, 4 , and *> = (~, F, f>.

[~ - - W R I T E] r = (m ,C ,e)~2+ (w ,C~F, >"~)

(2)

a**[~]Om ~ O°O°~[oo]Fw

where G' = (w, C, c), and ~' = (k, F, ~ '~).

[x, , --WRITE] r = (w, C, c) ~ (w, C'NF, e)

(3)

2F~,[oo]OWM**[oo]Aw }:=~ M O O \ [o o] F w (4)

where C = {w,C,c>, h = (u,A, eL>, and F =
<<Y,a>.

[-+--ERASE] r = (e, B--+C, e) ~L+ (e, F, e)

A°/)°-+[DE]Oe }
Ao MA[oo]/) w =2=> gl° MA[DE]~'e (5)

where O = (y., C, c>, B = <v, P, b>, /~ = <k, F, e>,
and (when D ¢ o) D = (s ,D,b) .

1337

['N-ERASE] r = (e, Bx.~C, e) ~ (e, F, f)

A ° B ° \ [D *] C e }
A°.~[oo]Mw ~ M°O,[B~°I~'e (6)
~ / ° O , [o o] B w

where 0 = <w,C,c>, B = <~,/3, b>, M =
(l ,M,m), ~' = (k ,F , /) , and (when D ¢ o)
D = (. , . ,m> .

[~ - E R A S E] ~ = (e, E ~ C , ~'~) ~ (m, r, e)

/~°B~[°°]C'e } ~ M N A [~) E] F m
M N A [D E] B m (7)

where C = (w~C, ~"~), /) = (v,B,b), and ~' =
<k, F, ~)

[/ - E R A S E] r = (e, B/zC, c) ~-* (e, F, e)

/)°B°/Z[oo]Ce
} ~ MNA[oo]Fe (8)

MNA[oo]/)w

where (7 = (w,C,c), /) = (v,B,b>, and ~' =
(k, F, b>

/)°/)°/~[DE°]Oe }
M N A[oo]Bw ~ MNA[OP]I~e (9)
MD°".~[OP]E,e

where C = (_w, C, c), [3 = (v, B, b}, F = (k, F, b),
and (when O ¢ o) 0 = (1, O,b}.

[SWAP] r = (p, C, () ~-+ (q, F, ()

A B h [D E] C m ~ A B h [D E] F m (10)

where C' = (w,C,c), ~' = (k,F,c), and either
c = ~ = ~ ° o r ~ = e .

The best way to apprehend these rules is to vi-
sualize them graphically as done for the two most
complex ones (Rules 6 and 9) in Figures 4 and 5.

O B

A "-.~L

Figure 4: Application of Rule 6

N C D

Figure 5: Application of Rule 9

5.1 Reduc ing the complex i ty
An analysis of the time complexity to apply each rule
gives us polynomial complexities O(n ~') with u < 6
except for Rule 9 where u -- 8. However, by adapt-
ing an idea from (Nederhof, 1997), we replace Rule 9
by the alternate and equivalent Rule 11.

/)°*/z[D/~°]Ce }
*D° \ [OP]E ,e
MNA[o<>]/)w ~ M N A [O P] F e (11)

M*'%[OP]*e
where C' = (w,C,e), /) = (v,B,b>, /~ = (k,F,b),
and (when 0 ¢ o) O = (1, O,b).

Rule 11 has same complexity than Rule 9, but may
actually be split into two rules of lesser complex-
ity O(n6), introducing an intermediary pseudo-item
BB/z[[OP]]Ce (intuitively assimilable to a "deeply
escaped" CF derivation).

Rule 12 collects these pseudo-items (indepeu-
dently from any transition) while Rule 13 combines
them with items (given a 7 ERASE transition r).

BB ff[DE°]Ce }
.Do..N[Op]E,e ~ BB/ [[OP]]C 'e (12)

/~°/)° '7 [[OPI]C'e }
MNA[ool/)w ~ M N A [O P] F e (13)
M * ".~[OP].e

where C' = (w,C,c), /) = (%/3, b>, P = (k,F,b),
and (when O # o) O = (l,O,b).

T h e o r e m 5.1 The worst time complexity of the ap-
plication rules (1,2,3,~,5,6,7,8,10,12,13) is O(n c')
where n is the length of the input string. The worst
space complexity is O(nh).

5.2 Correc tness resul ts
Two main theorems establish the correctness of
derivable items w.r.t, derivable configurations.

A derivable item is either the initial i tem or
an item resulting from the application of a combi-
nation rules on derivable items. The initial item
(0, e)(0, e)~[oo]<0," $0 ,~W)w stands for the virtual

derivation step (w, 0, e, e)l- (w, 0, ~$0, ~w) .

T h e o r e m 5.2 (S o u n d n e s s) F o r every derivable
item Z = A B h [D E] C m , there exists a derivation
on configurations

(o, e>l~- ~1~ v

such that NI- ~- 12 is a CF or xCF derivation repro>
sentable by I.

Proof: By induction on the item derivation length
and by case analysis. |

1338

T h e o r e m 5.3 (C o m p l e t e n e s s) For all derivable
configuration (m,, w, F~C, @), there exists a derivable
item A B S [D E] C m such that C = (w, C, c).

Pro@ By induction on the configuration deriva-
tion length and by case analysis of the different ap-
plication rules. We also need the following "Extrac-
tion Lemma". |

P r o p o s i t i o n 5.1 From any derivation

<0, ~>I-~- ('n, w,-ZC, ~c)

may be extracted a suJflx CF or xCF sub-derivation
bll- ~ (m, w, ~C, @) for some configuration Lt.

5.3 I l l u s t r a t i o n

In the context of TAG parsing (Sect. 3), we can
provide some intuition of the items that are built
with A(G,--~, ~-), using some characteristic points
encountered during the traversal of an adjunction
(Fig. 6).

after CALL __] before RET
on ADJ A,al/z[e,O]RlW l A1A1/2[FIA4]R.2e
on SPINE A,S~[oolF~w j A,S,--*[F, A4]F2e
o n F O O T ~ ~] Baa'%[G,B4]A4e

: i

Figure 6: Adjunction and Items

6 C o n c l u s i o n
This paper unifies different results about TAGs and
LIGs in an uniform setting and illustrates the ad-
vantages of a clear distinction between the use of
an operational device and the evaluation of this de-
vice. The operational device (here SD-2SA) helps us
to focus on the description of parsing strategies (for
LIGs and TAGs), while, independently, we design an
efficient evaluation mechanism for this device (here
tabular interpretation with complexity O(n6)).

Besides illustrating a methodology, we believe our
approach also opens new axes of research.

For instance, even if the tabular interpretation
we have presented has (we believe) the best possi-
ble complexity, it is still possible (using techniques
outside the scope of this paper, (Barthdlenly and
Villemonte de la Clergerie, 1996)) to improve its ef-
ficienc.y by refining what information should be kept
in each kind of items {hence increasing computation
sharing and reducing the number of items).

To handle TAGs or LIGs with attributes, we also
plan to extend SD-2SA to deal with first-order terms
(rather than just symbols) using unification to apply
transitions and subsumption to check items.

R e f e r e n c e s

Alfred V. Aho. 1968. Indexed g r a m m a r s an ex-
tension of context-free grammars. Journal of the
ACM, 15(4):647-671, October.

Miguel Angel Alonso Pardo, Eric de la Clergerie,
and Manuel Vilares Ferro. 1997. Automata-based
parsing in dynamic programming for Linear In-
dexed Grammars. In A. S. Narin'yani, editor,
Proc. of DIALOGUE'97 Computational Linguis-
tics and its Applications International Workshop,
pages 22-27, Moscow, Russia, June.

F. P. Barth(flemy and E. Villemontc de la Clergeric.
1996. hfformation flow in tabular interpretations
for generalized push-down automata. To appear
in journal of TCS.

Tilman Becker. 1994. A new automaton model
for TAGs: 2-SA. Computational Intelligence,
10(4):422--430.

Gerald Gazdar. 1987. Applicability of indexed
grammars to natural languages. In U. Reyle and
C. Rohrer, editors, Natural Language Parsing and
Linguistic Theories, pages 69-94. D. Reidel Pub-
lishing Company.

Aravind K. Joshi. 1987. An introduction to tree
adjoining grammars. In Alexis Manaster-Ranler,
editor, Mathematics of Language, pages 87
115. John Benjamins Publishing Co., Amster-
dam/Philadelphia.

Mark-Jan Nederhof. 1997. Solving the correct-
prefix property for TAGs. In T. Becket and H.-V.
Krieger, editors, Proc. of MOL'97, pages 124 130,
Schloss Dagstuhl, Germany, August.

Mark-Jan Nederhof. 1998. Linear indexed automata
and tabulation of TAG parsing. In Proc. of First
Workshop on Tabulation in Parsing and Deduc-
tion (TAPD'98), pages 1-9, Paris, France, April.

Owen Rainbow. 1994. Formal and Computational
Aspects of Natural Language Syntax. Ph.I). thesis,
Univcrsity of Pemlsylvania.

K. Vijay-Shanker. 1988. A Study of Trec Adjoining
Grammars. Ph.D. thesis, University of Pennsyl-
vania, January.

1339

