
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 551–560, Prague, June 2007. c©2007 Association for Computational Linguistics

Parsimonious Data-Oriented Parsing

Willem Zuidema
Institute for Logic, Language and

Computation, University of Amsterdam
Plantage Muidergracht 24

1018 TV, Amsterdam, the Netherlands
jzuidema@science.uva.nl

Abstract

This paper explores a parsimonious ap-
proach to Data-Oriented Parsing. While al-
lowing, in principle, all possible subtrees
of trees in the treebank to be productive
elements, our approach aims at finding a
manageable subset of these trees that can
accurately describe empirical distributions
over phrase-structure trees. The proposed
algorithm leads to computationally much
more tracktable parsers, as well as linguis-
tically more informative grammars. The
parser is evaluated on the OVIS and WSJ
corpora, and shows improvements on effi-
ciency, parse accuracy and testset likelihood.

1 Data-Oriented Parsing
Data-Oriented Parsing (DOP) is a framework for
statistical parsing and language modeling originally
proposed by Scha (1990). Some of its innovations,
although radical at the time, are now widely ac-
cepted: the use of fragments from the trees in an
annotated corpus as the symbolic grammar (now
known as “treebank grammars”, Charniak, 1996)
and inclusion of all statistical dependencies between
nodes in the trees for disambiguation (the “all-
subtrees approach”, Collins & Duffy, 2002).

The best known instantiations of the DOP-
framework are due to Bod (1998; 2001; 2003),
using the Probabilistic Tree Substitution Grammar
(PTSG) formalism. Bod has advocated a maximal-
ist approach to DOP, inducing grammars that con-
tain all subtrees of all parse trees in the treebank,

and using them to parse unknown sentences where
all of these subtrees can potentially contribute to the
most probable parse. Although Bod’s empirical re-
sults have been excellent, his maximalism poses im-
portant computational challenges that, although not
necessarily unsolvable, threaten both the scalability
to larger treebanks and the cognitive plausibility of
the models.

In this paper I explore a different approach to
DOP, that I will call “Parsimonious Data-Oriented
Parsing” (P-DOP). This approach remains true to
Scha’s original program, by allowing, in principle,
all possible subtrees of trees in the treebank to be
the productive elements. But unlike Bod’s approach,
P-DOP aims at finding a succinct subset of such el-
ementary trees, chosen such that it can still accu-
rately describe observed distributions over phrase-
structure trees. I will demonstrate that P-DOP leads
to computationally more tracktable parsers, as well
as linguistically more informative grammars. More-
over, as P-DOP is formulated as an enrichment
of the treebank Probabilistic Context-free Grammar
(PCFG), it allows for much easier comparison to al-
ternative approaches to statistical parsing (Collins,
1997; Charniak, 1997; Johnson, 1998; Klein and
Manning, 2003; Petrov et al., 2006).

2 Independence Assumptions in PCFGs
Parsing with treebank PCFGs, in its simplest form,
involves the following steps: (1) a treebank is cre-
ated by extracting phrase-structure trees from an an-
notated corpus, and split in a train- and a testset;
(2) a PCFG is read off from all productions in the
trainset trees, with weights proportional to their fre-

551

quency in the treebank (the “relative frequency esti-
mate”); (3) a standard PCFG parser is used to find
for each yield of the test-set trees the most probable
parse; (4) these parses are compared to the test-set
trees to count matching brackets, labels and trees.

PCFGs incorporate a strong statistical indepen-
dence assumption: that the expansion of a nonter-
minal node is only dependent on the node’s label.
All state-of-the-art wide-coverage parsers relax this
assumption in some way, for instance by (i) chang-
ing the parser in step (3), such that the application
of rules is conditioned on other steps in the deriva-
tion process (Collins, 1997; Charniak, 1997), or
by (ii) enriching the nonterminal labels in step (1)
with context-information (Johnson, 1998; Klein and
Manning, 2003), along with suitable backtransforms
in step (4). These two approaches often turn out to
be equivalent, although for some conditionings it is
not trivial to work out the equivalent enrichment and
vice versa, especially when combined with smooth-
ing. Interesting recent work has focused on the au-
tomatic induction of enrichments (Matzuzaki et al.,
2005; Prescher, 2005), leading to extremely accurate
parsers (Petrov et al., 2006).

DOP relaxes the independence assumption by
changing the class of probabilistic grammars in-
duced in step (2). In DOP1 (Bod, 1998), a PTSG
is induced, which consists, subject to some heuris-
tic constraints, of all subtrees1 of the treebank
trees with a weight proportional to their frequency.
PTSGs allow multiple derivations to yield the same
parse; in DOP1 the sum of their probabilities gives
the probability of the parse. The relation between
DOP and enrichment/conditioning models was clar-
ified by Joshua Goodman, who devised an efficient
PCFG transform of the DOP1 model (Goodman,
1996). The size of the PCFG resulting from this
transform is linear in the number of nonterminals to-
kens in the corpus. Goodman’s transform, in com-
bination with a range of heuristics, allowed Bod
(2003) to run the DOP model on the Penn Treebank
WSJ benchmark and obtain some of the best results
obtained with a generative model.

The computational challenges for DOP are far
from solved, however. The difference with style

1A subtree t
′ of a parse tree t is a tree such that every node

i
′ in t

′ equals a node i in t, and i
′ either has no daughters or the

same daughter nodes as i.

(ii) enrichment is that we derive many more rules
from every original tree than the number of CFG-
productions it contains. This is one reason why the
relative frequency estimator for DOP is inconsistent
(Johnson, 2002). But worse, perhaps, the size of the
grammar remains gigantic2 , making it difficult for
many in the field to replicate Bod’s results.

In this paper, we develop a parsimonious ap-
proach to DOP, that avoids many of the computa-
tional problems of the maximalist approach but tries
to maintain its excellent empirical performance. Our
approach starts, both conceptually and technically,
with an analysis of where the PCFG independence
assumption breaks down when modeling empirical
distributions. In section 2 we derive equations for
the expected frequency of arbitrary subtrees under a
distribution defined by a given PCFG, and use them
to measure how much observed subtree-frequencies
deviate from expectation. In section 4 we generalize
this analysis to PTSGs. In section 5 we discuss an al-
gorithm for estimating PTSGs from a treebank, that
is based on minimizing the differences between ex-
pected and observed subtree-frequencies. We then
proceed with discussing PTSGs induced from var-
ious treebanks, and in section 6 the use of these
PTSGs for parsing.

3 Deviations from a PCFG distribution
PCFGs can be viewed as PTSGs where the elemen-
tary trees are restricted to depth 1; we therefore start
by repeating the definition of PTSGs (Bod, 1998),
and use notation appropriate for PTSGs throughout.
An PTSG is a 5-tuple 〈Vn, Vt, S, T, w〉, where Vn is
the set of non-terminal symbols; Vt is the set of ter-
minal symbols; S ∈ Vn is the start symbol; T is a set
of elementary trees, such that for every τ ∈ T the
unique root node r(τ) ∈ Vn, the (possibly empty)
set of internal nodes i(τ) ⊂ Vn and the set of leaf
nodes l(τ) ⊂ Vn ∪ Vt; finally, w : T → [0, 1] is a
probability (weight) distribution over the elementary
trees, such that for any τ ∈ T ,

∑
τ ′∈R(τ) w(τ ′) = 1,

where R(τ) is the set of elementary trees with the
same root label as τ . It will prove useful to also
define the set of all possible trees θ over the defined

2Sections 2-21 of WSJ contain 1676821 productions. Of
these,106 are lexical productions, and 36151 top-productions,
leaving approx. 640000 internal productions which yield about
2.5 × 106 rules in Goodman’s transform.

552

alphabets (with the same conditions on root, internal
and leaf nodes as for T), and the set of all possible
complete parse trees Θ (with r(t) = S and all leaf
nodes l(t) ⊂ Vt). Obviously, T ⊂ θ and Θ ⊂ θ.

The substitution operation ◦ is defined if the left-
most nonterminal leaf in τ1 is identical to the root
of τ2. Performing substitution τ1 ◦ τ2 yields t3, if t3
is identical to τ1 with the leftmost nonterminal leaf
replaced by τ2. A derivation is a sequence of ele-
mentary trees, where the first tree τ ∈ T has root-
label S and every next tree combines through sub-
stitution with the result of the substitutions before
it. In this paper, we are only concerned with gram-
mars that define proper probability distributions over
trees, such that the probability of all derivations sum
up to 1 and no probability mass gets lost in deriva-
tions that never reach a terminal yield. That is, we
require (if t(d) is the tree derived by derivation d):

∑

d:t(d)∈Θ

P (d) = 1. (1)

For simplicity, but without loss of generality, we as-
sume there are no recursions on the start symbol.

In this section, we restrict ourselves to PCFG dis-
tributions, and thus to a T with only depth 1 trees.
The probability of a PCFG rule (conditioned on its
left-hand side) in the conventional notation, P (A 7→
αβ . . . γ|A), now corresponds to the probability of a
depth 1 tree (conditioned on its root nonterminal):

P

A

α β . . . γ
|A

Of course, the probability of a (complete) deriva-
tion is simply the product of the (conditional) prob-
abilities of the rules in the derivation. It is useful to
consider, for a given grammar G generating a cor-
pus of N trees, the expected frequency of visiting
nonterminal state X:

EF (X) =

{
N if X = S∑

τ EF (τ)C(X, l(τ)) otherwise
(2)

where C(X, l(τ)) gives the number of occurrences
of nonterminal X among the leaves of elementary
tree τ . Furthermore, the expected usage frequency
of τ is given by

EF (τ) = EF (r(τ))P (τ |r(τ))

= EF (r(τ))w(τ) (3)

Substituting eq (3) into (2) yields a system of
|Vn| linear equations, that can be straightforwardly
solved using standard methods.

We are interested in the empirical deviations from
the distribution defined by a given grammar (for in-
stance, the treebank PCFG), such that we can adjust
the grammar to better model the training data (whilst
avoiding overfitting). In line with the general DOP
approach, we would like to measure this deviation
for every possible subtree. Of course, the condi-
tional probability of an arbitrary subtree is simply
the product of the rule probabilities. The expected
frequency of a subtree is the expected frequency of
its root state, times the conditional probability:

EF (t) = EF (r(t))P (t|r(t)) (4)

Using these equations, we can measure for each
observed subtree in the corpus, the difference be-
tween observed frequency and expected frequency.
This will give high values for overrepresented and
frequent constructions in the corpus, such as sub-
trees corresponding to revenues rose CD % to $ CD
million from $ CD million last year, details weren’t
disclosed, NP-SUBJ declined to comment and con-
tracted and negated auxiliaries such as won’t, can’t
and don’t. The top-10 overrepresented subtrees in
the WSJ20-corpus are given in figure 1.

VP

VBD

”SAID”

SBAR

S

TOP

S

CC

”BUT”

S@1

S

CC

”BUT”

S@1

NP-SBJ

NNP

”MR.”

NNP

SBAR

IN

”THAT”

S

NP

NP PP

IN NP

PP

IN

”OF”

NP

PP-LOC

IN

”IN”

NP

VP@1

RB

”N’T”

VP

TOP

S

CC S@1

NP-SBJ S@2

Figure 1: Top-10 overrepresented subtrees (excluding subtrees
with punctuation) in sentences of length ≤ 20, including punc-
tuation, in sections 2-21 of the WSJ-corpus (transformed to
Chomsky Normal Form, whereby newly created nonterminals
are marked with an @). Measured are the deviations from
the expected frequencies according to the treebank PCFG (of
this selection), as in equation (4) but with EF (r(t)) replaced
by the empirical frequency o(r(t)). Observed frequencies are
(deviations between brackets): 461 (+408.2), 554 (+363.8),
556 (+361.7), 479 (+348.2), 332 (+314.3), 415 (+313.3), 460
(+305.1), 389 (+283.0), 426 (+277.2), 295 (+266.1).

Of course, there are also many subtrees that oc-
cur much less frequently than the grammar predicts,
such as for instance subtrees corresponding to in-
frequent or non-occurring variations of the frequent

553

ones, e.g. revenues rose CD from $ CD million from
$ CD million. Underrepresented subtrees found in
the WSJ20 corpus, include (VP (VBZ ”IS”) NP)),
which occurs only once, even though it is predicted
152.7 times more often (in all other VP’s with “IS”,
the NP is labeled NP-PRD); and (PP (IN ”IN”) NP)),
which occurs 38 times but is expected 121.0 times
more often (IN NP-constructions are usually labeled
PP-LOC).

Given such statistics, how do we improve the
grammar such that it better models the data? PCFG
enrichment models (Klein and Manning, 2003;
Schmid, 2006) split (and merge) nonterminals;
in automatic enrichment methods (Prescher, 2005;
Petrov et al., 2006) these transformations are per-
formed so as to maximize data likelihood (under
some constraints). The treebank PCFG-distribution
thereby changes, such that the deviations from fig-
ure 1 mostly disappear. For instance, the overrepre-
sentation of “but” as the sentence-initial CC in the
second and third subtree of that figure, is dealt with
in (Schmid, 2006) by splitting the CC-category into
CC/BUT and CC/AND. However, also when a range
of such transformations is applied, some subtrees are
still greatly overrepresented. Figure 2 gives the top-
10 overrepresented subtrees of the same treebank,
enriched with Schmid’s enrichment program tmod.

In DOP, larger subtrees can be explicitly repre-
sented as units. This is the approach we take in
this paper, which involves switching from PCFGs
to PTSGs. However, we cannot simply add over-
represented trees to the treebank PCFG; as is clear
from figure 2, many of the overrepresented subtrees
are in fact spurious variations of the same construc-
tions (e.g. “$ CD million”, “a JJ NN”). To reach our
goal of finding the minimal set of subtrees that ac-
curately models the empirical distribution over trees,
we will thus need to consider a series of PTSGs, find
the subtrees that are still overrepresented and adapt
the grammar accordingly.

4 Deviations from an PTSG distribution
4.1 Expected Frequencies: An Example
Once we allow T to contain elementary trees of
depth larger than 1, the equations above become
more difficult. The reason is that now multiple
derivations may give rise to the same parse tree, and,

NP-SBJ/3S/BASE

NNP

”MR.”

NNP@1

QP/$

$ QP/$@1

CD CD@1

”MILLION”

NP-SBJ/BASE

NNP

”MR.”

NNP@1

]QP/$

$

”$”

QP/$@1

CD CD@1

”MILLION”
QP/$@1

CD CD@1

”MILLION”

NP/BASE

DT/A NP/BASE@1

JJ NN

VP/FIN

MD VP/FIN@1

RB/NOT VP/INF

NP/BASE

DT/A

”A”

NP/BASE@1

JJ NN

TOP

NP-SBJ/3S/BASE

NNP

”MR.”

NNP@1

S/FIN/.@1

NP/BASE

NNP NP/BASE@1

NNP@1 NP/BASE@2

Figure 2: Top-10 overrepresented subtrees (excluding subtrees
with punctuation) in the WSJ20 corpus, enriched with the tmod
program (Schmid, 2006). Empirical frequencies are as fol-
lows (deviations between brackets): 262 (+207.6), 235 (+158.4)
207 (+156.4), 228 (+153.5), 237 (+141.0), 190 (+134.2), 153
(+126.5), 166 (+117.8), 139 (+110.0), 111 (+103.8).

as a corrolary, a specific subtree can emerge in many
different ways. Consider an PTSG that consists of
all subtrees of the trees t1, t2 and t3 in figure 3, and
the expected frequency of the subtree t∗.

t1 =S

B

x

A

y

t2 =S

A

x

B

C

y

D

x

t3 =S

A

y

B

C

x

D

y

t
∗ =B

C D

y

Figure 3: Three example treebank trees and the focal subtree

It is clear that t∗ might arise in many different
ways. For instance, it emerges in the derivation with
elementary trees τ1 ◦τ4 ◦τ5 from figure 4, but also in
derivations τ2 ◦ τ4 and τ3 ◦ τ5. Note that in none of
these derivations elementary tree t∗ itself was used.

τ1 =S

A

x

B

C D

τ2 = S

A

y

B

C D

y

τ3 = S

A

x

B

C

y

D

τ4 = C

x

τ5 =D

y
τ6 =B

C D

Figure 4: Some elementary trees extracted from the trees in fig 3

4.2 Expected Frequency: Usage & Occurrence
Hence, when using PTSGs, we need to distinguish
between the expected usage frequency of an elemen-
tary tree (written as Eu(τ)), and the expected occur-
rence frequency (Eo(t)) of the corresponding sub-
tree. Moreover, not all nonterminal nodes in a de-

554

rived tree are necessarily “visited” substitution sites.
The expected frequency of visiting a nonterminal
state X as substitution site depends on the usage fre-
quencies:

EF (X) =

{
N if X = S∑

τ Eu(τ)C(X, l(τ)) otherwise
(5)

Relating usage frequencies to weights is still sim-
ple (compare equation 3):

Eu(τ) = EF (r(τ))w(τ) (6)

And hence: w(τ) = Eu(τ)/
∑

τ ′:r(τ)=r(τ ′) Eu(τ ′).
The expected frequency of a complete tree is not

simply a product anymore, but the sum of the differ-
ent derivation probabilities (where der(t) gives the
set of derivations of t):

Eo(t) =
∑

d∈der(t)

∏

τ∈d

w(τ) if t ∈ Θ (7)

4.3 Expected Frequency of Arbitrary Subtrees
Most complex is the expected occurrence frequency
of an arbitrary subtree t. From the example above it
is clear that it is not necessary that the root of t is a
substitution site. Analogous to equation (4), we need
the expected frequency of arriving at some state σ in
the derivation process that is still consistent with ex-
panding to something that contains t, and multiply it
with the probability that this expansion indeed hap-
pens:

Eo(t) =
∑

σ

EF (σ)P (t|σ) (8)

To be able to define the states σ, we redefine the
set of derivations der(t) of a subtree t, such that the
derivations der(t∗) of our example tree from figure 3
are the following: d1 = B ◦ τ6 ◦ τ5, d2 = τ6 ◦ τ5,
d3 = B ◦ t∗ and d4 = t∗. Only if a derivation starts
with a single nonterminal is the root node consid-
ered a substitution site. The states σ correspond to
the first elements of each of these derivations, i.e.
〈B, τ6, B, t∗〉.

As was clear from the example in section 4.1,
we need to consider all supertrees of the trees in
the derivation of t for calculating the expected fre-
quency of a state and the probability of expanding
from that state to form t. It is useful to distin-
guish, as do Bod & Kaplan (Bod, 1998, ch. 10) two

types of supertree-subtree relations, depending on
whether nodes must be removed from the root down-
ward, or from the leaves (“frontier”) upward. “Root-
subtrees” of t are those subtrees headed by any of
t’s internal nodes and everything below. “Frontier-
subtrees” are those subtrees headed by t’s root-node,
pruned at any number (≥ 0) of internal nodes. Using
◦ to indicate left-most substitution, we can write:

• t1 is a root-subtree of t1, and t1 is a root-subtree
of t2, if ∃t3, such that t3 ◦ t1 = t2;

• t1 is a frontier-subtree of t1, and t1 is a frontier-
subtree of t2, if ∃t3 . . . tn, such that t1 ◦ t3 . . . ◦
tn = t2.

• t′ is the x-frontier-subtree of t, t′ = fsx(t), if
x is a set of nodes in t, such that if t is pruned
at each i ∈ x it equals t′.

We use the notation st(t) for the set of subtrees of
t, rs(t) for the set of root-subtrees of t and fs(t) for
the set of frontier-subtrees of t. Thus defined, the set
of all subtrees of t is the set of all frontier-subtrees
of all root-subtrees of t: st(t) = {t′|∃t′′(t′′ ∈
rs(t) ∧ t′ ∈ fs(t′′)). We further define the sets of
root-supertrees, frontier-supertrees, and supertrees
as follows: (i) f̂ sx(t) = {t′|t = fsx(t

′)}, (ii)
f̂ s(t) = {t′|t ∈ fs(t′)} (iii) ŝt(t) = {t′|t ∈ st(t′)}.

If there are only terminals in the yield of t, the ex-
pected frequency of a state σ is now simply the sum
of the expected usage frequencies of those elemen-
tary trees that have σ at their frontier (i.e. that σ is a
root-subtree of):

EF (σ) =
∑

τ ′:σ∈rs(τ ′)

Eu(τ ′) if l(t) ⊂ Vt (9)

If there are nonterminals in the yield of t, as in the
example, we need to also consider elementary trees
that have these nonterminals already expanded. To
see why, consider again the example of section 4.1
and check that also elementary tree τ3 contributes to
the expected frequency of t∗. If we take this into
account, and write nt(t) for the nonterminal nodes
in the yield of t, the final expression for the expected
frequency of state σ becomes:

EF (σ) =
∑

τ∈f̂s(σ)

∑

τ ′∈ ̂rsnt(t)(τ)

Eu(τ ′) (10)

555

Finally, the probability of expanding a state σ
such that t emerges is again simplest if t has no non-
terminals as leaves. Remember that a state σ was the
first element of a derivation of t; the probability of
expanding to t is simply the product of the weights
of the remaining elementary trees in the derivation
(if states are unique for a derivation):

P (t|σ) =
∏

τ∈rest(d)

w(τ) if l(t) ⊂ Vt (11)

If there are nonterminals among the leaves of t,
however, we need again to sum over possible expan-
sions at those nonterminal leaves:

P (t|σ) =
∏

τ∈rest(d)

∑

τ ′∈ ̂fsx(t)(τ)

w
(
τ ′

)
(12)

Substituting equations (9) and (12) into equa-
tion (8) gives a general expression for the expected
occurrence frequency of an arbitary subtree t:

Eo(t) =
∑

d∈der(t)

(∏

τ∈

rest(d)

∑

τ ′∈ ̂fsx(t)(τ)

w
(
τ ′

)

∑

τ∈

r̂s(first(d))

∑

τ ′∈ ̂fsx(t)(τ)

Eu(τ ′)

)
. (13)

5 Minimizing deviations: estimation
The equations just derived can be used to learn an
PTSG from a treebank, using an estimation proce-
dure we call “push-n-pull” (pnp). This procedure
was described in some detail elsewhere (Zuidema,
2006b); here I only sketch the basic idea. Given
an initial setting of the parameters (all depth 1 el-
ementary trees at their empirical frequency), the
method calculates the expected frequency of all
complete and incomplete trees. If a tree t’s ex-
pected frequency Eo(t) is higher than its observed
frequency o(t), the method subtracts the difference
from the tree’s score, and distributes (“pushes”) it
over the elementary trees involved in all its deriva-
tions (der(t)). If it is lower, it “pulls” the difference
from all its derivations.

The “score” of an elementary tree τ is the al-
gorithm’s estimate of the usage frequency u(τ).
The amounts of score that are pushed or pulled are

capped by the requirement that ∀τ u(τ) ≥ 0; more-
over, the learning rate parameter γ determines the
fraction of the expected-observed difference that is
actually pushed or pulled. Finally, the method in-
cludes a bias (B) for moving probability mass to
smaller elementary trees, to avoid overfitting (its ef-
fects become smaller as more data gets observed).

Because smaller elementary trees will be involved
in other derivations as well, the push and pull opera-
tions will shift probabilities between different parse
trees. Suppose a given complete tree is the only tree
with nonzero frequency of all trees that can be built
from the same components. This tree will continue
to “pull” until it has in fact reached its appropriate
frequency. Similarly, if a given tree does have zero
observed frequency, it will continue to leak score to
other derivations with the same components.

NP/BASE

DT/A NP/BASE@1

JJ NN

NP-SBJ/3S/BASE

NNP

”MR.”

NNP1

NP/BASE

DT/THE

”THE”

NP/BASE@1

JJ NN

NP-SBJ/BASE

NNP

”MR.”

NNP1

NP/GEN/BASE

NNP NP/GEN/BASE@1

NNP1 POS

”’S”

NP/PP

NP/BASE PP/OF/NP

IN/OF

”OF”

NP/BASE1

NP/BASE

NNP NP/BASE@1

NNP1 NNP2

NP/BASE

JJ NP/BASE@1

JJ1 NNS

NP

QP/$

$ QP/$@1

CD CD1

”MILLION”

VP/FIN

MD VP/FIN@1

ADVP/V

RB/V

VP/INF

Figure 5: Top-10 elementary trees of depth>1, excluding those
with punctuation, from running pnp on the enriched WSJ20.

The output of the push-n-pull algorithm is an
PTSG, with the same set of elementary trees as the
DOP models of Bod (1998; 2001). This set is very
large. However, unlike those existing DOP models,
the score distribution over these elementary trees is
extremely skewed: relatively few trees receive high
scores, and there is a very long tail of trees with low
scores. In Zuidema (2006b) we give a qualitative
analysis of the subtrees with the highest scores as in-
duced from the ATIS treebank, which include many
of its frequent constructions including show me NP,
I would like NP, flights from NP to NP. The top-10
larger elementary trees that result from running pnp
on a randomly selected trainset of about 8000 sen-
tences of the Dutch OVIS treebank (Veldhuijzen van
Zanten et al., 1999), can be glossed as: Yes, from NP
to NP, No thank you very much, I want to VP-INF,

556

No thank you, I want PP to VP-INF, I want PP, I
want Prep NP-LOC Prep NP-LOC, Yes please, At
CD o’clock. In figure 5 we give the top-10 elemen-
tary trees resulting from the WSJ20-corpus.

Figure 6: Log-log curves of (i) subtree frequencies against rank
(for 106 subtrees from WSJ20), (ii) pnp-scores against rank,
and (iii) the same for the top-10000 depth>1-subtrees.

Figure 6 shows some characteristics of this last
grammar. Shown are log-log plots, such as com-
monly used to visualise the Zipf-distributions in nat-
ural language. The top curve plots log(frequency)
against log(rank) for each subtree of the trees in
the corpus, which shows the approximate Zipfian
behavior. The second curve from above plots the
log(score) against log(rank) for these same subtrees.
As can be observed, the score-distribution follows
the frequency distribution only for the most frequent
subtrees (all of depth 1), but then deviates from it
downwards. The bottom curve – an almost straight
line in this log-log space – gives the log(score) vs
log(rank) of subtrees with a depth>1.

Figure 7: Subtree frequencies against pnp-scores, including
subsets pnp1000 (dark/blue) and pnp10000 (light/green).

Figure 7 further illustrates the difference between
the score- and the frequency-distributions, by plot-

ting for each subtree, log-frequency (y-axis) against
log-score (x-axis). The subtrees clearly fall into two
categories: those where the scores correlate strongly
with frequency (the depth 1 subtrees) and the larger
subtrees that vary greatly in how strong scores corre-
late with frequency. Only larger subtrees that receive
relatively high scores should be used in parsing.

Weights are proportional to subtree-frequencies
in the DOP1 and related “maximalist” models.
The differences between the frequency and score-
distributions thus illustrate a very important differ-
ence between maximalist and parsimonious DOP.
The characteristics of the score distribution allow
P-DOP to throw away most of the subtrees without
significantly affecting the distribution over complete
parse trees that the grammar defines. This is the ap-
proach we take for evaluating parsing performance:
we take as our baseline the treebank PCFG, and then
add the n larger elementary trees with the highest
scores from our induced PTSG.

6 Parsing Results

For our parsing results we use BitPar, a fast
and freely available general PCFG parser (Schmid,
2004). In our first experiments we used the OVIS
corpus, with semantic tags and punctuation re-
moved, and all trees (train- and testset) binarized.
As a baseline experiment, we read off the treebank
PCFG as decribed in section 2. The recall, precision
and complete match results are in table 1, labeled tb-
pcfg. For comparison, we also show the results ob-
tained with two versions of the DOP model, DOP1
(Bod, 1998) and DOP* (Zollmann and Sima’an,
2005) on the same treebank.

We ran the pnp program as described above on
the trainset, with parameters B = 1.0, γ = 0.1 and
d = 4. This run yielded a single PTSG that was used
in 4 parsing runs. For these experiments, we added
increasingly many of the depth>1 elementary trees
from the PTSG, with minimum scores of 7.0, 1.0,
0.5, and 0.075. The added elementary trees were
first converted to PCFG rules, by labeling all inter-
nal nodes with a unique address label and reading
off the CFG-productions. Each rule received a score
equal to the score of the elementary tree it derived
from. A copy of each rule, with the label removed,
was also added with a negative score, BitPar auto-

557

matically sums (and substracts) and normalizes the
frequency information provided with each rule. Bit-
Par was then run on the testset sentences, with the
option to output the n best parses with n = 10 by
default. These parses were then read in in a post-
processing program, which removes address labels,
sums probabilities of equivalent parses and outputs
the most probable parse for each sentence (this is the
same approximation of MPP, albeit with smaller n,
as used in most of Bod’s DOP results). The results of
these experiments are also in table 1, labeled pnpN ,
where N is the number of elementary trees added.

model # rules LR LP CM

tb-pcfg 3000 93.45 95.5 85.84
DOP1 1.4 × 106 (87.55)
DOP* (< 50000) (87.7)
pnp100 3000+100 93.63 95.65 86.55
pnp763 3000+763 93.5 95.52 86.75
pnp1517 3000+1517 93.78 95.83 87.36
pnp11411 3000+11411 94.26 96.4 87.77

Table 1: Results on the Dutch OVIS tree bank, with semantic
tags and punctuation removed. Reported are evalb scores on a
random testset of 1000 sentences (a second testset of 1000 sen-
tences is kept for later evaluations). The trainset for both the
treebank grammar and the pnp program consists of the remain-
ing 8049 trees. Coverage in all cases in 989 sentences out of
1000. Results in brackets are from Zollman & Sima’an, 2005,
using a different train-test set split.

As these experiments show, adding larger elemen-
tary trees from the induced PTSG, in order of their
assigned scores, monotonously increases the parse
accuracy of the treebank PCFG. Although the final
grammar is at least 5 times larger than the origi-
nal treebank PCFG, and the parser therefore slower,
the grammar is orders of magnitude smaller than the
corresponding maximalist DOP models and shows
comparable parse accuracy.

For a second set of parsing experiments, we used
the WSJ portion of the Penn Tree Bank (Marcus et
al., 1993) and Helmut Schmid’s enrichment program
tmod (Schmid, 2006). Schmid’s program enriches
nonterminal labels in the treebank, using features in-
spired by (Klein and Manning, 2003). After enrich-
ment, Schmid obtained excellent parsing scores with
the treebank PCFG. In table 2, as model tb-pcfg, we
give our baseline results. These are slightly lower
than Schmid’s, for two reasons: (i) our implemen-

tation ignores the upper/lower case distinction, and
(ii) we do not use Schmid’s word class automaton
for unknown words (the only smoothing used is the
built-in feature of the BitPar parser, which extracts
an open-class-tag file from the lexicon file). Because
our interest here is in the principles of enrichment
we have not attempted to adapt these techniques for
our implementation.

As before, we ran the pnp program on the train-
set, the enriched sections 2-21 of the WSJ. For
computational reasons, pnp is only run on trees
with a yield of length (including punctuation) ≤
20. This run, which took several days on a ma-
chine with 1.5Gb RAM, again produced a very large
PTSG, from which we extracted the 1000 and 10000
depth>1 elementary trees with the highest scores
for parsing experiments. Parsing and postprocess-
ing is performed as before, with the MPP approxi-
mated from the best n = 20 parses. Results from
these experiments are shown in table 2, as models
pnp1000 and pnp10000. With a small number of
added trees, we see a small drop in the parsing per-
formance, which we interpret as evidence that our
additions somewhat disturb the nicely tuned prob-
ability distribution of the treebank PCFG without
providing many advantages, because the most fre-
quent constructions have already been addressed in
the manual PCFG enrichment. However, with 10000
added subtrees we see an increase in parse accuracy,
providing evidence that pnp has learned potential
enrichments that go beyond the manual enrichment.

model LR LP F1 CM

tb-pcfg 83.27 83.53 83.40 26.58
pnp1000 83.20 83.47 83.33 26.70
pnp10000 83.56 83.99 83.77 26.93

Table 2: Results on the WSJ section of the Penn Tree Bank,
where nonterminals are enriched with features using Helmut
Schmid’s tmod program (Schmid, 2006). Reported are evalb
scores (ignoring punctuation) on 1699 sentences≤ 100, includ-
ing punctuation, from section 22. Sections 02-21 were the train
set for the treebank PCFG; only trees with a yield (including
punctuation) of length ≤ 20 were used for the pnp program.
Coverage in all cases is 1691 (excluding failed parses gives
F1 = 85.19 for the tb-pcfg-baseline, and 85.54 for pnp10000).

In figure 8(left) we plot the difference in parse
accuracy between the treebank PCFG and our best
model per testset sentence. To make the plot more
informative, the sentences are ordered by increasing

558

difference. Hence, on the left are sentences where
the treebank PCFG scores better, and at the right
the sentence where pnp10000 scores best. As is
clear from this graph, for most sentences there is
no difference, but there are small and about equally
sized subsets of sentences for which one or the other
model scores better. We have briefly analysed these
sentences, but not found a clear pattern. In fig-
ure 8(right) we plot in a similar way the difference
in log-likelihood that the parsers assign to each sen-
tence. Here we see a clear pattern: only very few
sentences receive slightly higher likelihood under
the PCFG model. For a good portion of the sen-
tences, however, the pnp10000 model assigns them
somewhat and in some cases much higher likeli-
hood. The highest likelihood gains are due to a small
number of frequent multiword expressions, such as
“New York Stock Exchange Composite Trading”,
which P-DOP treats as a unit; all of the other gains
in likelihood are also due to the use of depth>1 ele-
mentary trees, including some non-contiguous con-
structions such as revenues rose CD % to $ CD mil-
lion from $ CD million.

-60

-40

-20

 0

 20

 40

 60

 0 200 400 600 800 1000 1200 1400 1600 1800

F-score difference (pnp-tbg)

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400 1600 1800

Log-likelihood difference (pnp-tbg)

Figure 8: Per sentence difference in f-score (left) and log-
likelihood (right) of the sentences of WSJ section 22. The x-
axis gives the sentence-rank when sentences are ordered from
small to large on y-axis value.

7 Discussion and Conclusions
We set out to develop a parsimonious approach to
Data-Oriented Parsing, where all subtrees can poten-
tially become units in a probabilistic grammar but
only if the statistics require it. The grammars re-
sulting from our algorithm are orders of magnitude
smaller than those used in Bod’s maximalist DOP.
Although our parsing results are not yet at the level
of the best results obtained by Bod, our results in-
dicate that we are getting closer and that we already
induce linguistically more plausible grammars.

Could P-DOP eventually not only be more effi-
cient, but also more accurate than maximalist DOP

models? Bod has argued that the explanation for
DOP’s excellent results is that it takes into account
all possible dependencies between productions in
a tree, and not just those from an a-priori chosen
subset (e.g. lexical, head, parent features). Non-
head dependencies in non-contiguous natural lan-
guage constructions, like more ... than, as in more
freight than cargo, are typically excluded in the en-
richment/conditioning approaches discussed in sec-
tion 2. Bod wants to include any dependency a pri-
ori, and then “let the statistics decide”.

Although the inclusion of all dependencies must
somehow explain the performance difference be-
tween Bod’s best generative model and manually en-
riched PCFG models, this explanation is not entirely
satisfactory. Zuidema (2006a) shows that also the
estimator (Bod, 2003) uses is biased and inconsis-
tent, and will, even in the limit of infinite data, not
correctly identify many possible distributions over
trees. This is not just a theoretical problem. For
instance, in the Penn Tree Bank the construction
won’t VP is annotated as (VP (MD wo) (RB n’t) VP).
There is a strong dependency between the two mor-
phemes: wo doesn’t exist as an independent word,
and strongly predicts n’t. However, Bod’s estimator
will continue to reserve probability mass for other
combinations with the same POS-tags such as wo
not, even with an infinite data set only containing
will not and wo n’t. Because in parsing the strings
are given, this particular example will not harm the
parse accuracy results. The example might be di-
agnostic for other cases that do, however, and cer-
tainly will have impact when DOP is used as lan-
guage model. P-DOP, in contrast, does converge to
grammars that treat won’t as a single unit.

The exact relation of P-DOP to other DOP mod-
els, including S-DOP (Bod, 2003), Backoff-DOP
(Sima’an and Buratto, 2003), DOP* (Zollmann and
Sima’an, 2005) and ML-DOP (Bod, 2006; based on
Expectation Maximization) and not dissimilar au-
tomatic enrichment models such as (Petrov et al.,
2006), remains a topic for future work.

Acknowledgments Funded by the Netherlands
Organisation for Scientific Research (EW), project
nr. 612.066.405; many thanks to Reut Tsarfaty,
Remko Scha, Rens Bod and three anonymous re-
viewers for their comments.

559

References
Rens Bod. 1998. Beyond Grammar: An experience-

based theory of language. CSLI, Stanford, CA.

Rens Bod. 2001. What is the minimal set of fragments
that achieves maximal parse accuracy? In Proceed-
ings ACL-2001.

Rens Bod. 2003. An efficient implementation of a new
DOP model. In Proceedings EACL’03.

Rens Bod. 2006. An all-subtrees approach to unsuper-
vised parsing. Proceedings ACL-COLING’06.

Eugene Charniak. 1996. Tree-bank grammars. Techni-
cal report, Department of Computer Science, Brown
University

Eugene Charniak. 1997. Statistical parsing with a
context-free grammar and word statistics. In Proceed-
ings of the fourteenth national conference on artificial
intelligence, Menlo Park. AAAI Press/MIT Press.

Michael Collins and Nigel Duffy. 2002. New ranking
algorithms for parsing and tagging: Kernels over dis-
crete structures, and the voted perceptron. In Proceed-
ings ACL 2002.

Michael Collins. 1997. Three generative, lexicalized
models for statistical parsing. In Philip R. Cohen
and Wolfgang Wahlster, editors, Proceedings ACL’97,
pages 16–23.

Joshua Goodman. 1996. Efficient algorithms for parsing
the DOP model. In Proceedings EMNLP, pages 143–
152.

Mark Johnson. 1998. PCFG models of linguis-
tic tree representations. Computational Linguistics,
24(4):613–632.

Mark Johnson. 2002. The DOP estimation method is
biased and inconsistent. Computational Linguistics,
28(1):71–76.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In Proceedings ACL’03.

M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguistics,
19(2).

T. Matzuzaki, Y. Miyao, and J. Tsujii. 2005. Proba-
bilistic CFG with latent annotations. In Proceedings
ACL’05, pages 75–82.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and in-
terpretable tree annotation. In Proceedings ACL-
COLING’06, pages 443–440.

Detlef Prescher. 2005. Inducing head-driven PCFGs
with latent heads: Refining a tree-bank grammar for
parsing. In Proceedings ECML’05.

Remko Scha. 1990. Taaltheorie en taaltechnolo-
gie; competence en performance. In R. de Kort
and G.L.J. Leerdam, editors, Computertoepassin-
gen in de Neerlandistiek, pages 7–22. LVVN,
Almere, the Netherlands. English translation at
http://iaaa.nl/rs/LeerdamE.html.

Helmut Schmid. 2004. Efficient parsing of highly am-
biguous context-free grammars with bit vectors. In
Proceedings COLING 2004.

Helmut Schmid. 2006. Trace prediction and recovery
with unlexicalized PCFGs and slash features. In Pro-
ceedings of COLING-ACL 2006.

Khalil Sima’an. 2002. Computational complexity of
probabilistic disambiguation. Grammars, 5(2):125–
151.

Khalil Sima’an and Luciano Buratto. 2003. Backoff pa-
rameter estimation for the DOP model. In Proceedings
of the 14th European Conference on Machine Learn-
ing (ECML’03, Cavtat-Dubrovnik, Croatia, number
2837 in Lecture Notes in Artificial Intelligence, pages
373–384. Springer Verlag, Berlin, Germany.

Gert Veldhuijzen van Zanten, Gosse Bouma, Khalil
Sima’an, Gertjan van Noord, and Remko Bonnema.
1999. Evaluation of the NLP components of the
OVIS2 spoken dialogue system. In van Eynde, Schu-
urman, and Schelkens, editors, Computational Lin-
guistics in the Netherlands 1998, pages 213–229.
Rodopi, Amsterdam.

Andreas Zollmann and Khalil Sima’an. 2005. A consis-
tent and efficient estimator for data-oriented parsing.
Journal of Automata, Languages and Combinatorics,
10(2/3):367–388.

Willem Zuidema. 2006a. Theoretical evalua-
tion of estimation methods for Data-Oriented
Parsing. In Proceedings EACL 2006 (Con-
ference Companion), pages 183–186. Associa-
tion for Computational Linguistics. Erratum on
http://staff.science.uva.nl/˜jzuidema/research.

Willem Zuidema. 2006b. What are the productive units
of natural language grammar? A DOP approach to the
automatic identification of constructions. In Proceed-
ings of the 10th International Conference on Compu-
tational Natural Language Learning (CONLL-X).

560

