A Semi-Supervised Approach to Improve Classification of Infrequent Discourse Relations Using Feature Vector Extension

Hugo Hernault, Danushka Bollegala, Mitsuru Ishizuka


Anthology ID:
D10-1039
Volume:
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing
Month:
October
Year:
2010
Address:
Cambridge, MA
Editors:
Hang Li, Lluís Màrquez
Venue:
EMNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
399–409
Language:
URL:
https://aclanthology.org/D10-1039/
DOI:
Bibkey:
Cite (ACL):
Hugo Hernault, Danushka Bollegala, and Mitsuru Ishizuka. 2010. A Semi-Supervised Approach to Improve Classification of Infrequent Discourse Relations Using Feature Vector Extension. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 399–409, Cambridge, MA. Association for Computational Linguistics.
Cite (Informal):
A Semi-Supervised Approach to Improve Classification of Infrequent Discourse Relations Using Feature Vector Extension (Hernault et al., EMNLP 2010)
Copy Citation:
PDF:
https://aclanthology.org/D10-1039.pdf