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Abstract

Most coreference resolution models determine
if two mentions are coreferent using a single
function over a set of constraints or features.
This approach can lead to incorrect decisions
as lower precision features often overwhelm
the smaller number of high precision ones. To
overcome this problem, we propose a simple
coreference architecture based on a sieve that
applies tiers of deterministic coreference mod-
els one at a time from highest to lowest preci-
sion. Each tier builds on the previous tier’s
entity cluster output. Further, our model prop-
agates global information by sharing attributes
(e.g., gender and number) across mentions in
the same cluster. This cautious sieve guar-
antees that stronger features are given prece-
dence over weaker ones and that each deci-
sion is made using all of the information avail-
able at the time. The framework is highly
modular: new coreference modules can be
plugged in without any change to the other
modules. In spite of its simplicity, our ap-
proach outperforms many state-of-the-art su-
pervised and unsupervised models on several
standard corpora. This suggests that sieve-
based approaches could be applied to other
NLP tasks.

1 Introduction

Recent work on coreference resolution has shown
that a rich feature space that models lexical, syn-
tactic, semantic, and discourse phenomena is cru-
cial to successfully address the task (Bengston and
Roth, 2008; Haghighi and Klein, 2009; Haghighi
and Klein, 2010). When such a rich representation

is available, even a simple deterministic model can
achieve state-of-the-art performance (Haghighi and
Klein, 2009).

By and large most approaches decide if two men-
tions are coreferent using a single function over all
these features and information local to the two men-
tions.1 This is problematic for two reasons: (1)
lower precision features may overwhelm the smaller
number of high precision ones, and (2) local infor-
mation is often insufficient to make an informed de-
cision. Consider this example:

The second attack occurred after some rocket firings
aimed, apparently, toward [the israelis], apparently in
retaliation. [we]’re checking our facts on that one. ...
the president, quoted by ari fleischer, his spokesman, is
saying he’s concerned the strike will undermine efforts
by palestinian authorities to bring an end to terrorist at-
tacks and does not contribute to the security of [israel].

Most state-of-the-art models will incorrectly link
we to the israelis because of their proximity and
compatibility of attributes (both we and the israelis
are plural). In contrast, a more cautious approach is
to first cluster the israelis with israel because the de-
monymy relation is highly precise. This initial clus-
tering step will assign the correct animacy attribute
(inanimate) to the corresponding geo-political
entity, which will prevent the incorrect merging with
the mention we (animate) in later steps.

We propose an unsupervised sieve-like approach
to coreference resolution that addresses these is-

1As we will discuss below, some approaches use an addi-
tional component to infer the overall best mention clusters for a
document, but this is still based on confidence scores assigned
using local information.
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sues. The approach applies tiers of coreference
models one at a time from highest to lowest pre-
cision. Each tier builds on the entity clusters con-
structed by previous models in the sieve, guarantee-
ing that stronger features are given precedence over
weaker ones. Furthermore, each model’s decisions
are richly informed by sharing attributes across the
mentions clustered in earlier tiers. This ensures that
each decision uses all of the information available
at the time. We implemented all components in our
approach using only deterministic models. All our
components are unsupervised, in the sense that they
do not require training on gold coreference links.

The contributions of this work are the following:
• We show that a simple scaffolding framework

that deploys strong features through tiers of
models performs significantly better than a
single-pass model. Additionally, we propose
several simple, yet powerful, new features.
• We demonstrate how far one can get with sim-

ple, deterministic coreference systems that do
not require machine learning or detailed se-
mantic information. Our approach outperforms
most other unsupervised coreference models
and several supervised ones on several datasets.

• Our modular framework can be easily extended
with arbitrary models, including statistical or
supervised models. We believe that our ap-
proach also serves as an ideal platform for the
development of future coreference systems.

2 Related Work

This work builds upon the recent observation that
strong features outweigh complex models for coref-
erence resolution, in both supervised and unsuper-
vised learning setups (Bengston and Roth, 2008;
Haghighi and Klein, 2009). Our work reinforces this
observation, and extends it by proposing a novel ar-
chitecture that: (a) allows easy deployment of such
features, and (b) infuses global information that can
be readily exploited by these features or constraints.

Most coreference resolution approaches perform
the task by aggregating local decisions about pairs
of mentions (Bengston and Roth, 2008; Finkel and
Manning, 2008; Haghighi and Klein, 2009; Stoy-
anov, 2010). Two recent works that diverge from
this pattern are Culotta et al. (2007) and Poon and

Domingos (2008). They perform coreference reso-
lution jointly for all mentions in a document, using
first-order probabilistic models in either supervised
or unsupervised settings. Haghighi and Klein (2010)
propose a generative approach that models entity
clusters explicitly using a mostly-unsupervised gen-
erative model. As previously mentioned, our work
is not constrained by first-order or Bayesian for-
malisms in how it uses cluster information. Ad-
ditionally, the deterministic models in our tiered
model are significantly simpler, yet perform gener-
ally better than the complex inference models pro-
posed in these works.

From a high level perspective, this work falls un-
der the theory of shaping, defined as a “method of
successive approximations” for learning (Skinner,
1938). This theory is known by different names in
many NLP applications: Brown et al. (1993) used
simple models as “stepping stones” for more com-
plex word alignment models; Collins (1999) used
“cautious” decision list learning for named entity
classification; Spitkovsky et al. (2010) used “baby
steps” for unsupervised dependency parsing, etc. To
the best of our knowledge, we are the first to apply
this theory to coreference resolution.

3 Description of the Task
Intra-document coreference resolution clusters to-
gether textual mentions within a single document
based on the underlying referent entity. Mentions
are usually noun phrases (NPs) headed by nominal
or pronominal terminals. To facilitate comparison
with most of the recent previous work, we report re-
sults using gold mention boundaries. However, our
approach does not make any assumptions about the
underlying mentions, so it is trivial to adapt it to pre-
dicted mention boundaries (e.g., see Haghighi and
Klein (2010) for a simple mention detection model).

3.1 Corpora
We used the following corpora for development and
evaluation:
• ACE2004-ROTH-DEV2 – development split

of Bengston and Roth (2008), from the corpus
used in the 2004 Automatic Content Extraction
(ACE) evaluation. It contains 68 documents
and 4,536 mentions.

2We use the same corpus names as (Haghighi and Klein,
2009) to facilitate comparison with previous work.
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• ACE2004-CULOTTA-TEST – partition of
ACE 2004 corpus reserved for testing by sev-
eral previous works (Culotta et al., 2007;
Bengston and Roth, 2008; Haghighi and Klein,
2009). It consists of 107 documents and 5,469
mentions.

• ACE2004-NWIRE – the newswire subset of
the ACE 2004 corpus, utilized by Poon and
Domingos (2008) and Haghighi and Klein
(2009) for testing. It contains 128 documents
and 11,413 mentions.

• MUC6-TEST – test corpus from the sixth
Message Understanding Conference (MUC-6)
evaluation. It contains 30 documents and 2,068
mentions.

We used the first corpus (ACE2004-ROTH-DEV)
for development. The other corpora are reserved for
testing. We parse all documents using the Stanford
parser (Klein and Manning, 2003). The syntactic in-
formation is used to identify the mention head words
and to define the ordering of mentions in a given
sentence (detailed in the next section). For a fair
comparison with previous work, we do not use gold
named entity labels or mention types but, instead,
take the labels provided by the Stanford named en-
tity recognizer (NER) (Finkel et al., 2005).

3.2 Evaluation Metrics
We use three evaluation metrics widely used in the
literature: (a) pairwise F1 (Ghosh, 2003) – com-
puted over mention pairs in the same entity clus-
ter; (b) MUC (Vilain et al., 1995) – which measures
how many predicted clusters need to be merged to
cover the gold clusters; and (c) B3 (Amit and Bald-
win, 1998) – which uses the intersection between
predicted and gold clusters for a given mention to
mark correct mentions and the sizes of the the pre-
dicted and gold clusters as denominators for preci-
sion and recall, respectively. We refer the interested
reader to (X. Luo, 2005; Finkel and Manning, 2008)
for an analysis of these metrics.

4 Description of the Multi-Pass Sieve
Our sieve framework is implemented as a succes-
sion of independent coreference models. We first de-
scribe how each model selects candidate mentions,
and then describe the models themselves.

4.1 Mention Processing
Given a mention mi, each model may either decline
to propose a solution (in the hope that one of the
subsequent models will solve it) or deterministically
select a single best antecedent from a list of pre-
vious mentions m1, . . . , mi−1. We sort candidate
antecedents using syntactic information provided by
the Stanford parser, as follows:

Same Sentence – Candidates in the same sentence
are sorted using left-to-right breadth-first traversal
of syntactic trees (Hobbs, 1977). Figure 1 shows an
example of candidate ordering based on this traver-
sal. The left-to-right ordering favors subjects, which
tend to appear closer to the beginning of the sentence
and are more probable antecedents. The breadth-
first traversal promotes syntactic salience by rank-
ing higher noun phrases that are closer to the top of
the parse tree (Haghighi and Klein, 2009). If the
sentence containing the anaphoric mention contains
multiple clauses, we repeat the above heuristic sep-
arately in each S* constituent, starting with the one
containing the mention.

Previous Sentence – For all nominal mentions we
sort candidates in the previous sentences using right-
to-left breadth-first traversal. This guarantees syn-
tactic salience and also favors document proximity.
For pronominal mentions, we sort candidates in pre-
vious sentences using left-to-right traversal in or-
der to favor subjects. Subjects are more probable
antecedents for pronouns (Kertz et al., 2006). For
example, this ordering favors the correct candidate
(pepsi) for the mention they:

[pepsi] says it expects to double [quaker]’s
snack food growth rate. after a month-long
courtship, [they] agreed to buy quaker oats. . .

In a significant departure from previous work,
each model in our framework gets (possibly incom-
plete) clustering information for each mention from
the earlier coreference models in the multi-pass sys-
tem. In other words, each mention mi may already
be assigned to a cluster Cj containing a set of men-
tions: Cj = {mj

1, . . . ,m
j
k}; mi ∈ Cj . Unassigned

mentions are unique members of their own cluster.
We use this information in several ways:

Attribute sharing – Pronominal coreference reso-
lution (discussed later in this section) is severely af-
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NP	  
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#2	  

#3	  

#4	  

Figure 1: Example of left-to-right breadth-first tree
traversal. The numbers indicate the order in which the
NPs are visited.

fected by missing attributes (which introduce pre-
cision errors because incorrect antecedents are se-
lected due to missing information) and incorrect at-
tributes (which introduce recall errors because cor-
rect links are not generated due to attribute mismatch
between mention and antecedent). To address this
issue, we perform a union of all mention attributes
(e.g., number, gender, animacy) in a given cluster
and share the result with all cluster mentions. If
attributes from different mentions contradict each
other we maintain all variants. For example, our
naive number detection assigns singular to the
mention a group of students and plural to five stu-
dents. When these mentions end up in the same clus-
ter, the resulting number attributes becomes the set
{singular, plural}. Thus this cluster can later
be merged with both singular and plural pronouns.

Mention selection – Traditionally, a coreference
model attempts to resolve every mention in the text,
which increases the likelihood of errors. Instead, in
each of our models, we exploit the cluster informa-
tion received from the previous stages by resolving
only mentions that are currently first in textual order
in their cluster. For example, given the following or-
dered list of mentions, {m1

1, m2
2, m2

3, m3
4, m1

5, m2
6},

where the superscript indicates cluster id, our model
will attempt to resolve only m2

2 and m3
4. These two

are the only mentions that have potential antecedents
and are currently marked as the first mentions in
their clusters. The intuition behind this heuristic
is two-fold. First, early cluster mentions are usu-
ally better defined than subsequent ones, which are
likely to have fewer modifiers or are pronouns (Fox,

1993). Several of our models use this modifier infor-
mation. Second, by definition, first mentions appear
closer to the beginning of the document, hence there
are fewer antecedent candidates to select from, and
fewer opportunities to make a mistake.

Search Pruning – Finally, we prune the search
space using discourse salience. We disable coref-
erence for first cluster mentions that: (a) are or start
with indefinite pronouns (e.g., some, other), or (b)
start with indefinite articles (e.g., a, an). One excep-
tion to this rule is the model deployed in the first
pass; it only links mentions if their entire extents
match exactly. This model is triggered for all nom-
inal mentions regardless of discourse salience, be-
cause it is possible that indefinite mentions are re-
peated in a document when concepts are discussed
but not instantiated, e.g., a sports bar below:

Hanlon, a longtime Broncos fan, thinks it is the perfect
place for [a sports bar] and has put up a blue-and-orange
sign reading, “Wanted Broncos Sports Bar On This Site.”
. . . In a Nov. 28 letter, Proper states “while we have no
objection to your advertising the property as a location
for [a sports bar], using the Broncos’ name and colors
gives the false impression that the bar is or can be affili-
ated with the Broncos.”

4.2 The Modules of the Multi-Pass Sieve

We now describe the coreference models imple-
mented in the sieve. For clarity, we summarize them
in Table 1 and show the cumulative performance as
they are added to the sieve in Table 2.

4.2.1 Pass 1 - Exact Match
This model links two mentions only if they con-

tain exactly the same extent text, including modifiers
and determiners, e.g., the Shahab 3 ground-ground
missile. As expected, this model is extremely pre-
cise, with a pairwise precision over 96%.

4.2.2 Pass 2 - Precise Constructs
This model links two mentions if any of the con-

ditions below are satisfied:

Appositive – the two nominal mentions are in an
appositive construction, e.g., [Israel’s Deputy De-
fense Minister], [Ephraim Sneh] , said . . . We
use the same syntactic rules to detect appositions as
Haghighi and Klein (2009).

495



Pass Type Features
1 N exact extent match
2 N,P appositive | predicate nominative | role appositive | relative pronoun | acronym | demonym
3 N cluster head match & word inclusion & compatible modifiers only & not i-within-i
4 N cluster head match & word inclusion & not i-within-i
5 N cluster head match & compatible modifiers only & not i-within-i
6 N relaxed cluster head match & word inclusion & not i-within-i
7 P pronoun match

Table 1: Summary of passes implemented in the sieve. The Type column indicates the type of coreference in each
pass: N – nominal or P – pronominal. & and | indicate conjunction and disjunction of features, respectively.

Predicate nominative – the two mentions (nominal
or pronominal) are in a copulative subject-object re-
lation, e.g., [The New York-based College Board] is
[a nonprofit organization that administers the SATs
and promotes higher education] (Poon and Domin-
gos, 2008).
Role appositive – the candidate antecedent is
headed by a noun and appears as a modifier in an
NP whose head is the current mention, e.g., [[ac-
tress] Rebecca Schaeffer]. This feature is inspired
by Haghighi and Klein (2009), who triggered it only
if the mention is labeled as a person by the NER.
We constrain this heuristic more in our work: we
allow this feature to match only if: (a) the mention
is labeled as a person, (b) the antecedent is animate
(we detail animacy detection in Pass 7), and (c) the
antecedent’s gender is not neutral.
Relative pronoun – the mention is a relative pro-
noun that modifies the head of the antecedent NP,
e.g., [the finance street [which] has already formed
in the Waitan district].
Acronym – both mentions are tagged as NNP and
one of them is an acronym of the other, e.g., [Agence
France Presse] . . . [AFP]. We use a simple acronym
detection algorithm, which marks a mention as an
acronym of another if its text equals the sequence
of upper case characters in the other mention. We
will adopt better solutions for acronym detection in
future work (Schwartz, 2003).
Demonym – one of the mentions is a demonym of
the other, e.g., [Israel] . . . [Israeli]. For demonym
detection we use a static list of countries and their
gentilic forms from Wikipedia.3

All the above features are extremely precise. As
shown in Table 2 the pairwise precision of the sieve

3
http://en.wikipedia.org/wiki/List_of_adjectival_and_

demonymic_forms_of_place_names

after adding these features is over 95% and recall
increases 5 points.

4.2.3 Pass 3 - Strict Head Matching
Linking a mention to an antecedent based on the

naive matching of their head words generates a lot
of spurious links because it completely ignores pos-
sibly incompatible modifiers (Elsner and Charniak,
2010). For example, Yale University and Harvard
University have similar head words, but they are ob-
viously different entities. To address this issue, this
pass implements several features that must all be
matched in order to yield a link:

Cluster head match – the mention head word
matches any head word in the antecedent clus-
ter. Note that this feature is actually more relaxed
than naive head matching between mention and an-
tecedent candidate because it is satisfied when the
mention’s head matches the head of any entity in the
candidate’s cluster. We constrain this feature by en-
forcing a conjunction with the features below.

Word inclusion – all the non-stop4 words in the
mention cluster are included in the set of non-stop
words in the cluster of the antecedent candidate.
This heuristic exploits the property of discourse that
it is uncommon to introduce novel information in
later mentions (Fox, 1993). Typically, mentions
of the same entity become shorter and less infor-
mative as the narrative progresses. For example,
the two mentions in . . . intervene in the [Florida
Supreme Court]’s move . . . does look like very dra-
matic change made by [the Florida court] point to
the same entity, but the two mentions in the text be-
low belong to different clusters:

The pilot had confirmed . . . he had turned onto

4Our stop word list includes person titles as well.
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MUC B3 Pairwise
Passes P R F1 P R F1 P R F1
{1} 95.9 31.8 47.8 99.1 53.4 69.4 96.9 15.4 26.6
{1,2} 95.4 43.7 59.9 98.5 58.4 73.3 95.7 20.6 33.8
{1,2,3} 92.1 51.3 65.9 96.7 62.9 76.3 91.5 26.8 41.5
{1,2,3,4} 91.7 51.9 66.3 96.5 63.5 76.6 91.4 27.8 42.7
{1,2,3,4,5} 91.1 52.6 66.7 96.1 63.9 76.7 90.3 28.4 43.2
{1,2,3,4,5,6} 89.5 53.6 67.1 95.3 64.5 76.9 88.8 29.2 43.9
{1,2,3,4,5,6,7} 83.7 74.1 78.6 88.1 74.2 80.5 80.1 51.0 62.3

Table 2: Cumulative performance on development (ACE2004-ROTH-DEV) as passes are added to the sieve.

[the correct runway] but pilots behind him say
he turned onto [the wrong runway].

Compatible modifiers only – the mention’s mod-
ifiers are all included in the modifiers of the an-
tecedent candidate. This feature models the same
discourse property as the previous feature, but it fo-
cuses on the two individual mentions to be linked,
rather than their entire clusters. For this feature we
only use modifiers that are nouns or adjectives.
Not i-within-i – the two mentions are not in an i-
within-i construct, i.e., one cannot be a child NP
in the other’s NP constituent (Haghighi and Klein,
2009).

This pass continues to maintain high precision
(91% pairwise) while improving recall significantly
(over 6 points pairwise and almost 8 points MUC).

4.2.4 Passes 4 and 5 - Variants of Strict Head
Passes 4 and 5 are different relaxations of the

feature conjunction introduced in Pass 3, i.e.,
Pass 4 removes the compatible modifiers
only feature, while Pass 5 removes the word
inclusion constraint. All in all, these two passes
yield an improvement of 1.7 pairwise F1 points,
due to recall improvements. Table 2 shows that the
word inclusion feature is more precise than
compatible modifiers only, but the latter
has better recall.

4.2.5 Pass 6 - Relaxed Head Matching
This pass relaxes the cluster head match heuris-

tic by allowing the mention head to match any word
in the cluster of the candidate antecedent. For ex-
ample, this heuristic matches the mention Sanders
to a cluster containing the mentions {Sauls, the
judge, Circuit Judge N. Sanders Sauls}. To maintain
high precision, this pass requires that both mention

and antecedent be labeled as named entities and the
types coincide. Furthermore, this pass implements
a conjunction of the above features with word
inclusion and not i-within-i. This pass
yields less than 1 point improvement in most met-
rics.

4.2.6 Pass 7 - Pronouns
With one exception (Pass 2), all the previous

coreference models focus on nominal coreference
resolution. However, it would be incorrect to say
that our framework ignores pronominal coreference
in the first six passes. In fact, the previous mod-
els prepare the stage for pronominal coreference by
constructing precise clusters with shared mention at-
tributes. These are crucial factors for pronominal
coreference.

Like previous work, we implement pronominal
coreference resolution by enforcing agreement con-
straints between the coreferent mentions. We use the
following attributes for these constraints:
Number – we assign number attributes based on:
(a) a static list for pronouns; (b) NER labels: men-
tions marked as a named entity are considered sin-
gular with the exception of organizations, which can
be both singular or plural; (c) part of speech tags:
NN*S tags are plural and all other NN* tags are sin-
gular; and (d) a static dictionary from (Bergsma and
Lin, 2006).
Gender – we assign gender attributes from static
lexicons from (Bergsma and Lin, 2006; Ji and Lin,
2009).
Person – we assign person attributes only to pro-
nouns. However, we do not enforce this constraint
when linking two pronouns if one appears within
quotes. This is a simple heuristic for speaker de-
tection, e.g., I and she point to the same person in
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“[I] voted my conscience,” [she] said.
Animacy – we set animacy attributes using: (a)
a static list for pronouns; (b) NER labels, e.g.,
PERSON is animate whereas LOCATION is not; and
(c) a dictionary boostrapped from the web (Ji and
Lin, 2009).
NER label – from the Stanford NER.
If we cannot detect a value, we set attributes to
unknown and treat them as wildcards, i.e., they can
match any other value.

This final model raises the pairwise recall of our
system almost 22 percentage points, with only an 8
point drop in pairwise precision. Table 2 shows that
similar behavior is measured for all other metrics.
After all passes have run, we take the transitive clo-
sure of the generated clusters as the system output.

5 Experimental Results
We present the results of our approach and other rel-
evant prior work in Table 3. We include in the ta-
ble all recent systems that report results under the
same conditions as our experimental setup (i.e., us-
ing gold mentions) and use the same corpora. We
exclude from this analysis two notable works that
report results only on a version of the task that in-
cludes finding mentions (Haghighi and Klein, 2010;
Stoyanov, 2010). The Haghighi and Klein (2009)
numbers have two variants: with semantics (+S)
and without (−S). To measure the contribution of
our multi-pass system, we also present results from a
single-pass variant of our system that uses all appli-
cable features from the multi-pass system (marked
as “single pass” in the table).

Our sieve model outperforms all systems on
two out of the four evaluation corpora (ACE2004-
ROTH-DEV and ACE2004-NWIRE), on all met-
rics. On the corpora where our model is not best,
it ranks a close second. For example, in ACE2004-
CULOTTA-TEST our system has a B3 F1 score
only .4 points lower than Bengston and Roth (2008)
and it outperforms all unsupervised approaches. In
MUC6-TEST, our sieve’s B3 F1 score is 1.8 points
lower than Haghighi and Klein (2009) +S, but it out-
performs a supervised system that used gold named
entity labels. Finally, the multi-pass architecture al-
ways beats the equivalent single-pass system with
its contribution ranging between 1 and 4 F1 points
depending on the corpus and evaluation metric.

Our approach has the highest precision on all cor-
pora, regardless of evaluation metric. We believe
this is particularly useful for large-scale NLP appli-
cations that use coreference resolution components,
e.g., question answering or information extraction.
These applications can generally function without
coreference information so it is beneficial to provide
such information only when it is highly precise.

6 Discussion

6.1 Comparison to Previous Work

The sieve model outperforms all other systems on
at least two test sets, even though most of the other
models are significantly richer. Amongst the com-
parisons, several are supervised (Bengston and Roth,
2008; Finkel and Manning, 2008; Culotta et al.,
2007). The system of Haghighi and Klein (2009)
+S uses a lexicon of semantically-compatible noun
pairs acquired transductively, i.e., with knowledge
of the mentions in the test set. Our system does
not rely on labeled corpora for training (like super-
vised approaches) nor access to corpora during test-
ing (like Haghighi and Klein (2009)).

The system that is closest to ours is Haghighi and
Klein (2009) −S. Like us, they use a rich set of fea-
tures and deterministic decisions. However, theirs
is a single-pass model with a smaller feature set
(no cluster-level, acronym, demonym, or animacy
information). Table 3 shows that on the two cor-
pora where results for this system are available, we
outperform it considerably on all metrics. To un-
derstand if the difference is due to the multi-pass
architecture or the richer feature set we compared
(Haghighi and Klein, 2009) −S against both our
multi-pass system and its single-pass variant. The
comparison indicates that both these contributions
help: our single-pass system outperforms Haghighi
and Klein (2009) consistently, and the multi-pass ar-
chitecture further improves the performance of our
single-pass system between 1 and 4 F1 points, de-
pending on the corpus and evaluation metric.

6.2 Semantic Head Matching

Recent unsupervised coreference work from
Haghighi and Klein (2009) included a novel
semantic component that matched related head
words (e.g., AOL is a company) learned from select
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MUC B3 Pairwise
P R F1 P R F1 P R F1

ACE2004-ROTH-DEV
This work (sieve) 83.7 74.1 78.6 88.1 74.2 80.5 80.1 51.0 62.3
This work (single pass) 82.2 72.6 77.1 86.8 72.6 79.1 76.0 47.6 58.5
Haghighi and Klein (2009) –S 78.3 70.5 74.2 84.0 71.0 76.9 71.3 45.4 55.5
Haghighi and Klein (2009) +S 77.9 74.1 75.9 81.8 74.3 77.9 68.2 51.2 58.5

ACE2004-CULOTTA-TEST
This work (sieve) 80.4 71.8 75.8 86.3 75.4 80.4 71.6 46.2 56.1
This work (single pass) 78.4 69.2 73.5 85.1 73.9 79.1 69.5 44.1 53.9
Haghighi and Klein (2009) –S 74.3 66.4 70.2 83.6 71.0 76.8 66.4 38.0 48.3
Haghighi and Klein (2009) +S 74.8 77.7 79.6 79.6 78.5 79.0 57.5 57.6 57.5
Culotta et al. (2007) – – – 86.7 73.2 79.3 – – –
Bengston and Roth (2008) 82.7 69.9 75.8 88.3 74.5 80.8 55.4 63.7 59.2

MUC6-TEST
This work (sieve) 90.5 68.0 77.7 91.2 61.2 73.2 90.3 53.3 67.1
This work (single pass) 89.3 65.9 75.8 90.2 58.8 71.1 89.5 50.6 64.7
Haghighi and Klein (2009) +S 87.2 77.3 81.9 84.7 67.3 75.0 80.5 57.8 67.3
Poon and Domingos (2008) 83.0 75.8 79.2 – – – 63.0 57.0 60.0
Finkel and Manning (2008) +G 89.7 55.1 68.3 90.9 49.7 64.3 74.1 37.1 49.5

ACE2004-NWIRE
This work (sieve) 83.8 73.2 78.1 87.5 71.9 78.9 79.6 46.2 58.4
This work (single pass) 82.2 71.5 76.5 86.2 70.0 77.3 76.9 41.9 54.2
Haghighi and Klein (2009) +S 77.0 75.9 76.5 79.4 74.5 76.9 66.9 49.2 56.7
Poon and Domingos (2008) 71.3 70.5 70.9 – – – 62.6 38.9 48.0
Finkel and Manning (2008) +G 78.7 58.5 67.1 86.8 65.2 74.5 76.1 44.2 55.9

Table 3: Results using gold mention boundaries. Where available, we show results for a given corpus grouped in
two blocks: the top block shows results of unsupervised systems and the bottom block contains supervised systems.
Bold numbers indicate best results in a given block. +/-S indicates if the (Haghighi and Klein, 2009) system in-
cludes/excludes their semantic component. +G marks systems that used gold NER labels.

wikipedia articles. They first identified articles
relevant to the entity mentions in the test set, and
then bootstrapped from known syntactic patterns
for apposition and predicate-nominatives in order to
learn a database of related head pairs. They show
impressive gains by using these learned pairs in
coreference decisions. This type of learning using
test set mentions is often described as transductive.

Our work instead focuses on an approach that
does not require access to the dataset beforehand.
We thus did not include a similar semantic compo-
nent in our system, given that running a bootstrap-
ping learner whenever a new data set is encountered
is not practical and, ultimately, reduces the usability
of this NLP component. However, our results show

that our sieve algorithm with minimal semantic in-
formation still performs as well as the Haghighi and
Klein (2009) system with semantics.

6.3 Flexible Architecture

The sieve architecture offers benefits beyond im-
proved accuracy. Its modular design provides a flex-
ibility for features that is not available in most su-
pervised or unsupervised systems. The sieve al-
lows new features to be seamlessly inserted with-
out affecting (or even understanding) the other com-
ponents. For instance, once a new high precision
feature (or group of features) is inserted as its own
stage, it will benefit later stages with more precise
clusters, but it will not interfere with their particu-
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lar algorithmic decisions. This flexibility is in sharp
contrast to supervised classifiers that require their
models to be retrained on labeled data, and unsu-
pervised systems that do not offer a clear insertion
point for new features. It can be difficult to fully
understand how a system makes a single decision,
but the sieve allows for flexible usage with minimal
effort.

6.4 Error Analysis

Pronominal Nominal Proper Total
Pronominal 49 / 237 116 / 317 104 / 595 269 / 1149

Nominal 79 / 351 129 / 913 61 / 986 269 / 2250
Proper 51 / 518 15 / 730 38 / 595 104 / 1843
Total 179 / 1106 260 / 1960 203 / 2176 642 / 5242

Table 4: Number of pair-wise errors produced by the
sieve after transitive closure in the MUC6-TEST corpus.
Rows indicate mention types; columns are types of an-
tecedent. Each cell shows the number of precision/recall
errors for that configuration. The total number of gold
links in MUC6-TEST is 11,236.

Table 4 shows the number of incorrect pair-wise
links generated by our system on the MUC6-TEST
corpus. The table indicates that most of our er-
rors are for nominal mentions. For example, the
combined (precision plus recall) number of errors
for proper or common noun mentions is three times
larger than the number of errors made for pronom-
inal mentions. The table also highlights that most
of our errors are recall errors. There are eight times
more recall errors than precision errors in our output.
This is a consequence of our decision to prioritize
highly precise features in the sieve.

The above analysis illustrates that our next effort
should focus on improving recall. In order to under-
stand the limitations of our current system, we ran-
domly selected 60 recall errors (20 for each mention
type) and investigated their causes. Not surprisingly,
the causes are unique to each type.

For proper nouns, 50% of recall errors are due to
mention lengthening, mentions that are longer than
their earlier mentions. For example, Washington-
based USAir appears after USAir in the text, so our
head matching components skip it because their high
precision depends on disallowing new modifiers as
the discourse proceeds. When the mentions were re-
versed (as is the usual case), they match.

The common noun recall errors are very differ-
ent from proper nouns: 17 of the 20 random exam-
ples can be classified as semantic knowledge. These
errors are roughly evenly split between recognizing
categories of names (e.g., Gitano is an organization
name hence it should match the nominal antecedent
the company), and understanding hypernym rela-
tions like settlements and agreements.

Pronoun errors come in two forms. Roughly 40%
of these errors are attribute mismatches involving
sometimes ambiguous uses of gender and number
(e.g., she with Pat Carney). Another 40% are not se-
mantic or attribute-based, but rather simply arise due
to the order in which we check potential antecedents.
In all these situations, the correct links are missed
because the system chooses a closer (incorrect) an-
tecedent.

These four highlighted errors (lengthening, se-
mantics, attributes, ordering) add up to 77% of all
recall errors in the selected set. In general, each
error type is particular to a specific mention type.
This suggests that recall improvements can be made
by focusing on one mention type without aversely
affecting the others. Our sieve-based approach to
coreference uniquely allows for such new models to
be seamlessly inserted.

7 Conclusion

We presented a simple deterministic approach to
coreference resolution that incorporates document-
level information, which is typically exploited only
by more complex, joint learning models. Our sieve
architecture applies a battery of deterministic coref-
erence models one at a time from highest to low-
est precision, where each model builds on the pre-
vious model’s cluster output. Despite its simplicity,
our approach outperforms or performs comparably
to the state of the art on several corpora.

An additional benefit of the sieve framework is its
modularity: new features or models can be inserted
in the system with limited understanding of the other
features already deployed. Our code is publicly re-
leased5 and can be used both as a stand-alone coref-
erence system and as a platform for the development
of future systems.

5http://nlp.stanford.edu/software/
dcoref.shtml
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The strong performance of our system suggests
the use of sieves in other NLP tasks for which a va-
riety of very high-precision features can be designed
and non-local features can be shared; likely candi-
dates include relation and event extraction, template
slot filling, and author name deduplication.
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