
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 320–331, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Generalized Higher-Order Dependency Parsing with Cube Pruning

Hao Zhang Ryan McDonald
Google, Inc.

{haozhang,ryanmcd}@google.com

Abstract

State-of-the-art graph-based parsers use fea-
tures over higher-order dependencies that rely
on decoding algorithms that are slow and
difficult to generalize. On the other hand,
transition-based dependency parsers can eas-
ily utilize such features without increasing the
linear complexity of the shift-reduce system
beyond a constant. In this paper, we attempt to
address this imbalance for graph-based pars-
ing by generalizing the Eisner (1996) algo-
rithm to handle arbitrary features over higher-
order dependencies. The generalization is at
the cost of asymptotic efficiency. To account
for this, cube pruning for decoding is utilized
(Chiang, 2007). For the first time, label tuple
and structural features such as valencies can
be scored efficiently with third-order features
in a graph-based parser. Our parser achieves
the state-of-art unlabeled accuracy of 93.06%
and labeled accuracy of 91.86% on the stan-
dard test set for English, at a faster speed than
a reimplementation of the third-order model of
Koo et al. (2010).

1 Introduction

The trade-off between rich features and exact de-
coding in dependency parsing has been well docu-
mented (McDonald and Nivre, 2007; Nivre and Mc-
Donald, 2008). Graph-based parsers typically trade-
off rich feature scope for exact (or near exact) de-
coding, whereas transition-based parsers make the
opposite trade-off. Recent research on both parsing
paradigms has attempted to address this.

In the transition-based parsing literature, the fo-
cus has been on increasing the search space of the

system at decoding time, as expanding the feature
scope is often trivial and in most cases only leads to
a constant-time increase in parser complexity. The
most common approach is to use beam search (Duan
et al., 2007; Johansson and Nugues, 2007; Titov and
Henderson, 2007; Zhang and Clark, 2008; Zhang
and Nivre, 2011), but more principled dynamic pro-
gramming solutions have been proposed (Huang and
Sagae, 2010). In all cases inference remains approx-
imate, though a larger search space is explored.

In the graph-based parsing literature, the main
thrust of research has been on extending the Eisner
chart-parsing algorithm (Eisner, 1996) to incorpo-
rate higher-order features (McDonald and Pereira,
2006; Carreras, 2007; Koo and Collins, 2010). A
similar line of research investigated the use of inte-
ger linear programming (ILP) formulations of pars-
ing (Riedel and Clarke, 2006; Martins et al., 2009;
Martins et al., 2010). Both solutions allow for exact
inference with higher-order features, but typically at
a high cost in terms of efficiency. Furthermore, spe-
cialized algorithms are required that deeply exploit
the structural properties of the given model. Upgrad-
ing a parser to score new types of higher-order de-
pendencies thus requires significant changes to the
underlying decoding algorithm. This is in stark con-
trast to transition-based systems, which simply re-
quire the definition of new feature extractors.

In this paper, we abandon exact search in graph-
based parsing in favor of freedom in feature scope.
We propose a parsing algorithm that keeps the back-
bone Eisner chart-parsing algorithm for first-order
parsing unchanged. Incorporating higher-order fea-
tures only involves changing the scoring function of

320

potential parses in each chart cell by expanding the
signature of each chart item to include all the non-
local context required to compute features. The core
chart-parsing algorithm remains the same regardless
of which features are incorporated. To control com-
plexity we use cube pruning (Chiang, 2007) with the
beam sizek in each cell. Furthermore, dynamic pro-
gramming in the style of Huang and Sagae (2010)
can be done by mergingk-best items that are equiv-
alent in scoring. Thus, our method is an applica-
tion of integrated decoding with a language model
in MT (Chiang, 2007) to dependency parsing, which
has previously been applied to constituent parsing
(Huang, 2008). However, unlike Huang, we only
have one decoding pass and a single trained model,
while Huang’s constituent parser maintains a sep-
arate generative base model from a following dis-
criminative re-ranking model. We draw connections
to related work in Section 6.

Our chart-based approximate search algorithm al-
lows for features on dependencies of an arbitrary or-
der — as well as over non-local structural proper-
ties of the parse trees — to be scored at will. In
this paper, we use first to third-order features of
greater varieties than Koo and Collins (2010). Ad-
ditionally, we look at higher-order dependency arc-
label features, which is novel to graph-based pars-
ing, though commonly exploited in transition-based
parsing (Zhang and Nivre, 2011). This is because
adding label tuple features would introduce a large
constant factor ofO(|L|3), where|L| is the size of
the label setL, into the complexity for exact third-
order parsing. In our formulation, only the top-
ranked labelled arcs would survive in each cell. As
a result, label features can be scored without combi-
natorial explosion. In addition, we explore the use
of valency features counting how many modifiers a
word can have on its left and right side. In the past,
only re-rankers onk-best lists of parses produced by
a simpler model use such features due to the diffi-
culty of incorporating them into search (Hall, 2007).

The final parser with all these features is both ac-
curate and fast. In standard experiments for English,
the unlabeled attachment score (UAS) is93.06%,
and the labeled attachment score (LAS) is91.86%.
The UAS score is state-of-art. The speed of our
parser is220 tokens per second, which is over4
times faster than an exact third-order parser that at-

Figure 1: Example Sentence.

tains UAS of92.81% and comparable to the state-of-
the-art transition-based system of Zhang and Nivre
(2011) that employs beam search.

2 Graph-based Dependency Parsing

Dependency parsers produce directed relationships
betweenheadwords and their syntacticmodifiers.
Each word modifies exactly one head, but can have
any number of modifiers itself. Theroot of a sen-
tence is a designated special symbol which all words
in the sentence directly or indirectly modify. Thus,
the dependency graph for a sentence is constrained
to be a directed tree. The directed syntactic rela-
tionships, aka dependency arcs or dependencies for
short, can often be labeled to indicate their syntactic
role. Figure 1 gives an example dependency tree.

For a sentencex = x1 . . . xn, dependency pars-
ing is the search for the set of head-modifier depen-
dency arcsy∗ such thaty∗ = argmaxy∈Y(x) f(x, y),
wheref is a scoring function. As mentioned before,
y∗ must represent a directed tree.|Y(x)| is then the
set of valid dependency trees forx and grows ex-
ponentially with respect to its length|x|. We fur-
ther defineL as the set of possible arc labels and use
the notation(i

l

−→ j) ∈ y to indicate that there is a
dependency from head wordxi to modifierxj with
label l in dependency treey.

In practice,f(x, y) is factorized into scoring func-
tions on parts of(x, y). For example, in first-
order dependency parsing (McDonald et al., 2005),
f(x, y) is factored by the individual arcs:

y∗ = argmax
y∈Y(x)

f(x, y) = argmax
y∈Y(x)

∑

(i
l

−→j)∈y

f(i
l

−→ j)

The factorization of dependency structures into arcs
enables an efficient dynamic programming algo-
rithm with running timeO(|x|3) (Eisner, 1996), for
the large family of projective dependency structures.

Figure 2 shows the parsing logic for the Eisner
algorithm. It has two types of dynamic program-
ming states:complete itemsand incomplete items.

321

Complete items correspond to half-constituents, and
are represented as triangles graphically. Incomplete
items correspond to dependency arcs, and are repre-
sented as trapezoids. The Eisner algorithm is the ba-
sis for the more specialized variants of higher-order
projective dependency parsing.

Second-order sibling models (McDonald and
Pereira, 2006) score adjacent arcs with a common
head. In order to score them efficiently, a new state
corresponding to modifier pairs was introduced to
the chart-parsing algorithm. Due to the careful fac-
torization, the asymptotic complexity of the revised
algorithm remainsO(|x|3). The resulting scoring
function is:

y∗ = argmax
y∈Y(x)

∑

(i
l

−→j,i
l
′

−→k)∈y

f(i
l

−→ j, i
l
′

−→ k)

where (i
l

−→ j, i
l
′

−→ k) ∈ y indicates two adja-
cent head-modifier relationships in dependency tree
y, one fromxi to xj with label l and another from
xi to xk with label l′. Wordsxj andxk are com-
monly referred to assiblings. In order to maintain
cubic parsing complexity, adjacent dependencies are
scored only if the modifiers occur on the same side
in the sentence relative to the head.

Second-order grandchild models (Carreras, 2007)
score adjacent arcs in length-two head-modifier
chains. For example, if wordxi modifies wordxj

with label l, but itself has a dependency to modi-
fier xk with label l′, then we would add a scoring

function f(j
l

−→ i
l
′

−→ k). These are calledgrand-
child models as they can score dependencies be-
tween a word and its modifier’s modifiers, i.e.,xk

is the grandchild ofxj in the above example. The
states in the Eisner algorithm need to be augmented
with the indices to the outermost modifiers in order
to score the outermost grandchildren. The resulting
algorithm becomesO(|x|4).

Finally, third-order models (Koo and Collins,
2010) score arc triples such as three adjacent sib-
ling modifiers, calledtri-siblings, or structures look-
ing at both horizontal contexts and vertical contexts,
e.g., grand-siblingsthat score a word, its modifier
and its adjacent grandchildren. To accommodate
the scorers for these sub-graphs, even more special-
ized dynamic programming states were introduced.
The Koo and Collins (2010) factorization enables

(a) = +

(b) = +

Figure 2: Structures and rules for parsing first-order mod-
els with the (Eisner, 1996) algorithm. This shows only
the construction of right-pointing dependencies and not
the symmetric case of left-pointing dependencies.

the scoring of certain types of third-order dependen-
cies withO(|x|4) decoder run-time complexity.

Each of these higher-order parsing algorithms
makes a clever factorization for the specific model
in consideration to keep complexity as low as possi-
ble. However, this results in a loss of generality.

3 Generalizing Eisner’s Algorithm

In this section, we generalize the Eisner algorithm
without introducing new parsing rules. The general-
ization is straight-forward: expand the dynamic pro-
gramming state to incorporate feature histories. This
is done on top of the two distinct chart items in the
O(|x|3) Eisner chart-parsing algorithm (Figure 2).
The advantage of this approach is that it maintains
the simplicity of the original Eisner algorithm. Un-
fortunately, it can increase the run-time complex-
ity of the algorithm substantially, but we will em-
ploy cube pruning to regain tractability. Because our
higher-order dependency parsing algorithm is based
the Eisner algorithm, it is currently limited to pro-
duce projective trees only.

3.1 Arbitrary n-th-order dependency parsing

We start with the simplest case of sibling models. If
we want to score sibling arcs, at rule(b) in Figure 2,
we can see that the complete item lying between
the head and the modifier (the middle of the three
items) does not contain information about the out-
ermost modifier of the head, which is the previous
dependency constructed and the sibling to the mod-
ifier of the dependency currently being constructed.
This fact suggests that, in order to score modifier
bigrams, the complete item states should be aug-
mented by the outermost modifier. We can aug-
ment the chart items with such information, which

322

(a) = +

(b) = +

Figure 3: Structures and rules for parsing models based
on modifier bigrams, with a generalized (Eisner, 1996)
algorithm. Here the dashed arrows indicate additional in-
formation stored in each chart-cell. Specifically the pre-
vious modifier in complete chart items.

is shown in Figure 3. It refines the complete items
by storing the previously constructed dependency to
the outermost modifiers. Note that now the signature
of the complete items is not simply the end-point in-
dexes, but contains the index of the outer modifier.

Using this chart item augmentation it is now pos-
sible to score both first-order arcs as well as second-
order sibling arcs. In fact, by symmetry, the new
dynamic program can also score the leftmost and
rightmost grandchildren of a head-modifier pair, in
rule (a) and rule(b) respectively. By counting the
number of free variables in each parsing rule, we
see that the parsing complexity isO(|x|5), which is
higher than both McDonald and Pereira (2006) and
Carreras (2007). The added complexity comes from
the fact that it is now possible to score a third-order
dependency consisting of the head, the modifier, the
sibling, and the outermost grandchild jointly.

We can go further to augment the complete and
incomplete states with more parsing history. Fig-
ure 4 shows one possible next step of generaliza-
tion. We generalize the states to keep track of the
latest two modifiers of the head. As a result, it be-
comes possible to score tri-siblings involving three
adjacent modifiers and grand-siblings involving two
outermost grandchildren – both of which comprise
the third-order Model 2 of Koo and Collins (2010) –
plus potentially any additional interactions of these
roles. Figure 5 shows another possible generaliza-
tion. We keep modifier chains up to length two in
the complete states. The added history enables the
computation of features for great-grandchildren re-

lationships:(h l

−→ m
l
′

−→ gc
l
′′

−→ ggc).
In general, we can augment the complete and in-

complete states withn variables representing the

(a) = +

(b) = +

Figure 4: Structures and rules for parsing models based
on modifier trigrams in horizontal contexts, with a gener-
alized (Eisner, 1996) algorithm. Here the dashed arrows
indicate the previous two modifiers to the head in each
chart item.

(a) = +

(b) = +

Figure 5: Structures and rules for parsing models based
on modifier trigrams in vertical contexts, with a gener-
alized (Eisner, 1996) algorithm. Here the dashed arrows
indicate the modifier to the head and the modifier’s mod-
ifier, forming a modifier chain of length two.

possible parsing histories and loop over the cross
product of the histories in the innermost loop of Eis-
ner algorithm. The cardinality of the cross product
is |x|n · |x|n. Thus, the complexity of the algo-
rithm augmented byn variables isO(|x|3 · |x|2n) =
O(|x|3+2n), wheren ≥ 0. Note that this complexity
is for unlabeled parsing. A factor of|L| for all or
a subset of the encoded arcs must be multiplied in
when predicting labeled parse structures.

3.2 History-based dependency parsing

The previousn modifiers, either horizontal or ver-
tical, is a potential signature of parsing history. We
can put arbitrary signatures of parsing history into
the chart items so that when we score a new item,
we can draw the distinguishing power of features
based on an arbitrarily deep history. For example,
consider thepositionof a modifier, which is the po-
sition in which it occurs amongst its siblings relative
to the location of the head. We can store the position
of the last modifier into both chart states. In com-
plete states, this signature tells us the position of the
outermost modifier, which is the valency of the head
in the left or right half-constituent.

323

In the extreme case, we can use full subtrees as
histories, although the cardinality of the set of his-
tories would quickly become exponential, especially
when one considers label ambiguity. Regardless, the
high complexity associated with this generalization,
even for second or third-order models, requires us to
appeal to approximate search algorithms.

3.3 Advantage of the generalization

The complexity analysis earlier in this section re-
veals the advantage of such a generalization scheme.
It factorizes a dynamic programming state for de-
pendency parsing into two parts: 1) the structural
state, which consists of the boundaries of incom-
plete and complete chart items, and accounts for the
O(|x|3) term in the analysis, and 2) the feature his-
tory, which is a signature of the internal content of a
sub-parse and accounts for theO(|x|2n) term. The
rules of the deductive parsing system – the Eisner al-
gorithm – stay the same as long as the structural rep-
resentation is unchanged. To generalize the parser
to handle richer features, one can simply enrich the
feature signature and the scoring function without
changing the structural state. A natural grouping of
states follows where all sub-parses sharing the same
chart boundaries are grouped together. This group-
ing will enable the cube pruning in Section 4 for ap-
proximate search.

There is another advantage of keeping the Eis-
ner parsing logic unchanged: derivations one-to-one
correspond to dependency parse trees. Augmenting
the complete and incomplete states does not intro-
duce spurious ambiguity. This grouping view is use-
ful for proving this point. Introducing higher order
features in each chart item will cause sub-derivations
to be re-ranked only. As a result, the final Viterbi
parse can differ from the one from the standard Eis-
ners algorithm. But the one-to-one correspondence
still holds.

4 Approximate Search with Cube Pruning

In machine translation decoding, ann-gram lan-
guage model can be incorporated into a translation
model by augmenting the dynamic programming
states for the translation model with the boundary
n − 1 words on the target side. The complexity
for exact search involves a factor of|x|4n−4 in the

hierarchical phrase-based model of Chiang (2007),
where|x| is the input sentence length. The standard
technique is to force a beam sizek on each transla-
tion state so that the possible combinations of lan-
guage model histories is bounded byk2. Further-
more, if the list ofk language model states are sorted
from the lowest cost to the highest cost, we can as-
sume the best combinations will still be among the
combinations of the top items from each list, al-
though the incorporation ofn-gram features breaks
the monotonic property of the underlying semi-ring.

Cube pruning is based on this approximation
(Chiang, 2007). It starts with the combination of the
top items in the lists to be combined. At each step, it
puts the neighbors of the current best combination,
which consists of going one position down in one of
thek-best lists, into a priority queue. The algorithm
stops whenk items have been popped off from the
queue. At the final step, it sorts the popped items
since they can be out-of-order. It reduces the combi-
nation complexity fromO(k2) to O(k · log(k)).

Our history-augmented parsing is analogous to
MT decoding. The possible higher-order histories
can similarly be limited to at mostk in each com-
plete or incomplete item. The core loop of the gener-
alized algorithm which has a complexity ofO(|x|2n)
can similarly be reduced toO(k ·log(k)). Therefore,
the whole parsing algorithm remainsO(|x|3) re-
gardless how deep we look into parsing history. Fig-
ure 6 illustrates the computation. We apply rule(b)
to combine two lists of augmented complete items
and keep the combinations with the highest model
scores. With cube pruning, we only explore cells at
(0, 0), (0, 1), (1, 0), (2, 0), and (1, 1), without the
need to evaluate scoring functions for the remaining
cells in the table. Similar computation happens with
rule (a).

In this example cube pruning does find the high-
est scoring combination, i.e., cell(1, 1). However,
note that the scores are not monotonic in the order in
which we search these cells as non-local features are
used to score the combinations. Thus, cube pruning
may not find the highest scoring combination. This
approximation is at the heart of cube pruning.

4.1 Recombination

The significance of using feature signatures is that
when two combinations result in a state with the

324

identical feature signature the one with the highest
score survives. This is the core principle of dynamic
programming. We call itrecombination. It denotes
the same meaning asstate-mergingin Huang and
Sagae (2010) for transition-based parsers.

In cube pruning, with recombination, thek-best
items in each chart cell are locally optimal (in the
pruned search space) over all sub-trees with an
equivalent state for future combinations. The cube
pruning algorithm without recombination degener-
ates to a recursivek-best re-scoring algorithm since
each of thek-best items would be unique by itself
as a sub-tree. It should be noted that by working
on a chart (or a forest, equivalently) the algorithm is
already applying recombination at a coarser level.

In machine translation, due to its large search
space and the abstract nature of ann-gram language
model, it is more common to see many sub-trees
with the same language model feature signature,
making recombination crucial (Chiang, 2007). In
constituent parser reranking (Huang, 2008), recom-
bination is less likely to happen since the rerank-
ing features capture peculiarities of local tree struc-
tures. For dependency parsing, we hypothesize that
the higher-order features are more similar to then-
gram language model features in MT as they tend to
be common features among many sub-trees. But as
the feature set becomes richer, recombination tends
to have a smaller effect. We will discuss the empiri-
cal results on recombination in Section 5.4.

5 Experiments

We define the scoring functionf(x, y) as a linear
classifier between a vector of features and a corre-
sponding weight vector, i.e.,f(x, y) = w · φ(x, y).
The feature functionφ decomposes with respect to
scoring functionf . We train the weights to optimize
the first-best structure. We use the max-loss vari-
ant of the margin infused relaxed algorithm (MIRA)
(Crammer et al., 2006) with a hamming-loss margin
as is common in the dependency parsing literature
(Martins et al., 2009; Martins et al., 2010). MIRA
only requires a first-best decoding algorithm, which
in our case is the approximate chart-based parsing
algorithms defined in Sections 3 and 4. Because our
decoding algorithm is approximate, this may lead to
invalid updates given to the optimizer (Huang and

=

0 : 1 : 2 :

+

0 : f = 2.5 f = 1 f = 2

1 : f = 1.5 f = 3.2 f = 0.5

2 : f = 2.3 f = 3 f = 1.8
...

Figure 6: Combining two lists of complete items with
cube pruning.

Fayong, 2012). However, we found that ignoring or
modifying such updates led to negligible differences
in practice. In all our experiments, we train MIRA
for 8 epochs and use a beam ofk = 5 during de-
coding. Both these values were determined on the
English development data.

5.1 Features

The feature templates we use are drawn from the
past work on graph-based parsing and transition-
based parsing. The base templates for the higher-
order dependencies are close to Koo and Collins
(2010), with the major exception that our features
include label-tuple information. The basic features
include identities, part of speech tags, and labels of
the words in dependency structures. These atomic
features are conjoined with the directions of arcs to
create compositen-gram features. The higher-order
dependency features can be categorized into the fol-
lowing sub-groups, where we useh to indicate the
head,m the modifier,s the modifier’s sibling andgc

a grandchild word in a dependency part.

• (labeled) modifier features:(h
l

−→ m)

• (labeled) sibling features:(h
l

−→ m, h
l
′

−→ s)

• (labeled) outermost grandchild features:

(h
l

−→ m
l
′

−→ gc)

• (labeled) tri-sibling features:

(h
l

−→ m, h
l
′

−→ s, h
l
′′

−→ s2)

• (labeled) grand-sibling features:

(h
l

−→ m
l
′

−→ gc, h
l

−→ m
l
′′

−→ gc2),

325

• (labeled) sibling and grandchild conjoined features:

(h
l

−→ m, h
l
′

−→ s, m
l
′′

−→ gc)

The general history features include valencies of
words conjoined with the directions of the dominat-
ing arcs. The positions of the modifiers are also con-
joined with the higher-order dependency features in
the previous list.

The features that are new compared to Koo and
Collins (2010) are the label tuple features, the sib-
ling and grandchild conjoined features, and the va-
lency features. We determine this feature set based
on experiments on the development data for English.
In Section 5.3 we examine the impact of these new
features on parser performance.

5.2 Main Results

Our first set of results are on English dependen-
cies. We used the Penn WSJ Treebank converted to
dependencies with Penn2Malt1 conversion software
specifying Yamada and Matsumoto head rules and
Malt label set. We used the standard splits of this
data: sections 2-21 for training; section 22 for vali-
dation; and section 23 for evaluation. We evaluated
our parsers using standard labeled accuracy scores
(LAS) and unlabeled accuracy scores (UAS) exclud-
ing punctuation. We report run-times in tokens per
second. Part-of-speech tags are predicted as input
using a linear-chain CRF.

Results are given in Table 1. We compare our
method to a state-of-the-art graph-based parser (Koo
and Collins, 2010) as well as a state-of-the-art
transition-based parser that uses a beam (Zhang
and Nivre, 2011) and the dynamic programming
transition-based parser of Huang and Sagae (2010).
Additionally, we compare to our own implementa-
tion of exact first to third-order graph-based parsing
and the transition-based system of Zhang and Nivre
(2011) with varying beam sizes.

There are a number of points to make. First,
approximate decoding with rich features and cube
pruning gives state-of-the-art labeled and unlabeled
parsing accuracies relative to previously reported re-
sults. This includes the best graph-based parsing
results of Koo and Collins (2010), which has near
identical performance, as well as the best beam-
based and dynamic-programming-based transition

1http://w3.msi.vxu.se/∼nivre/research/Penn2Malt.html

Parser UAS LAS Toks/Sec
Huang and Sagae (2010) 92.1- - -
Zhang and Nivre (2011) 92.9- 91.8- -
Zhang and Nivre (reimpl.)(beam=64) 92.73 91.67 760
Zhang and Nivre (reimpl.)(beam=256) 92.75 91.71 190
Koo and Collins (2010) 93.04 - -

1st-order exact (reimpl.) 91.80 90.50 2070
2nd-order exact (reimpl.) 92.40 91.12 1110
3rd-order exact (reimpl.) 92.81 -† 50
this paper 93.06 91.86 220

Table 1: Comparing this work in terms of parsing accu-
racy compared to state-of-the-art baselines on the English
test data. We also report results for a re-implementation
of exact first to third-order graph-based parsing and a re-
implementation of Zhang and Nivre (2011) in order to
compare parser speed.†Our exact third-order implemen-
tation currently only supports unlabeled parsing.

parsers (Huang and Sagae, 2010; Zhang and Nivre,
2011). Second, at a similar toks/sec parser speed,
our method achieves better performance than the
transition-based model of Zhang and Nivre (2011)
with a beam of 256. Finally, compared to an im-
plementation of an exact third-order parser – which
provides us with an apples-to-apples comparison in
terms of features and runtime – approximate decod-
ing with cube pruning is both more accurate and
while being 4-5 times as fast. It is more accurate as
it can easily incorporate more complex features and
it is faster since its asymptotic complexity is lower.
We should point out that our third-order reimple-
mentation is a purely unlabeled parser as we do not
have an implementation of an exact labeled third-
order parser. This likely under estimates its accu-
racy, but also significantly overestimates its speed.

Next, we looked at the impact of our system
on non-English treebanks. Specifically we fo-
cused on two sets of data. The first is the Chi-
nese Treebank converted to dependencies. Here
we use the identical training/validation/evaluation
splits and experimental set-up as Zhang and Nivre
(2011). Additionally, we evaluate our system on
eight other languages from the CoNLL 2006/2007
shared-task (Buchholz and Marsi, 2006; Nivre et
al., 2007). We selected the following four data
sets since they are primarily projective treebanks
(<1.0% non-projective arcs): Bulgarian and Span-
ish from CoNLL 2006 as well as Catalan and Ital-
ian from CoNLL 2007. Currently our method is
restricted to predicting strictly projective trees as it

326

uses the Eisner chart parsing algorithm as its back-
bone. We also report results from four additional
CoNLL data sets reported in Rush and Petrov (2012)
in order to directly compare accuracy. These are
German, Japanese, Portuguese and Swedish. For all
data sets we measure UAS and LAS excluding punc-
tuation and use gold tags as input to the parser as is
standard for these data sets.

Results are given in Table 2. Here we compare to
our re-implementations of Zhang and Nivre (2011),
exact first to third-order parsing and Rush and Petrov
(2012) for the data sets in which they reported re-
sults. We again see that approximate decoding with
rich features and cube pruning has higher accu-
racy than transition-based parsing with a large beam.
In particular, for theZH-CTB data set, our system
is currently the best reported result. Furthermore,
our system returns comparable accuracy with exact
third-order parsing, while being significantly faster
and more flexible.

5.3 Ablation studies

In this section, we analyze the contributions from
each of the feature groups. Each row in Table 3 uses
a super set of features than the previous row. All
systems use our proposed generalized higher-order
parser with cube-pruning. I.e., they are all using the
Eisner chart-parsing algorithm with expanded fea-
ture signatures. The only difference between sys-
tems is the set of features used. This allows us to see
the improvement from additional features.

The first row uses no higher-order features. It
is equivalent to the first-order model from Table 1.
The only difference is that it uses thek-best algo-
rithm to find the first-best, so it has additional over-
head compared to the standard Viterbi algorithm.
Each of the following rows gets a higher accuracy
than its previous row by adding more higher or-
der features. Putting in the sibling and grandchild
conjoined features and the valency features yields
a further improvement over the approximation of
Koo and Collins (2010). Thus, the addition of new
higher-order features, including valency, extra third-
order, and label tuple features, results in increased
accuracy. However, this is not without cost as the
run-time in terms of tokens/sec decreases (300 to
220). But this decrease is not asymptotic, as it would
be if one were to exactly search over our final model

Higher-order Features UAS LAS Toks/Sec
none 91.74 90.46 1510
McDonald (2006) features + labels 92.48 91.25 860
Carreras (2007) features + labels 92.85 91.66 540
Koo (2010) features + labels 92.92 91.75 300
all features 93.06 91.86 220

Table 3: Generalized higher-order parsing with cube
pruning using different feature sets.

Beam Recombination UAS LAS Toks/Sec
2 no 92.86 91.63 280
2 yes 92.89 91.65 260
5 no 93.05 91.85 240
5 yes 93.06 91.86 230
10 yes 93.05 91.85 140

Table 4: Showing the effect of better search on accuracy
and speed on the English test data with a fixed model.

with these additional features, e.g., valency would at
least multiply an additionalO(n) factor.

5.4 Impact of Search Errors

Since our decoding algorithm is not exact, it could
return sub-optimal outputs under the current model.
We analyze the effect of search errors on accuracies
in Table 4. We vary the beam size at each cell and
switch the option for signature-based recombination
to make search better or worse to see how much im-
pact it has on the final accuracy.

The results indicate that a relatively small per-cell
beam is good enough. Going from a beam of 2 to
5 increases accuracy notably, but going to a larger
beam size has little effect but at a cost in terms of
efficiency. This suggests that most of the parser am-
biguity is represented in the top-5 feature signatures
at each chart cell. Furthermore, recombination does
help slightly, but more so at smaller beam sizes.

If we keep the beam size constant but enlarge
the feature scope from second-order to third-order,
one would expect more search errors to occur. We
measured this empirically by computing the num-
ber of sentences where the gold tree had a higher
model score than the predicted tree in the English
evaluation data. Indeed, larger feature scopes do
lead to more search errors, but the absolute num-
ber of search errors is usually quite small – there
are only 19 search errors using second-order features
and 32 search errors using third-order plus valency
features out of 2416 English test sentences. Part
of the reason for this is that there are only 12 la-

327

Zhang and Nivre Zhang and Nivre Rush 1st-order 2nd-order 3rd-order
(reimpl.) (reimpl.) and exact exact exact

Language (beam=64) (beam=256) Petrov‡ (reimpl.) (reimpl.) (reimpl.) this paper
BG-CONLL 92.22 / 87.87 92.28 / 87.91 91.9- / - 91.98 / 87.13 93.02 / 88.1392.96 / - 93.08 / 88.23
CA-CONLL 93.76 / 87.74 93.83 / 87.85 92.83 / 86.22 93.45 / 87.1994.07 / - 94.00 /88.08
DE-CONLL 89.18 / 86.50 88.94 / 86.58 90.8- / - 89.28 / 86.06 90.87 / 87.7291.29 / - 91.35 / 88.42
ES-CONLL 86.64 / 83.25 86.62 / 83.11 85.35 / 81.53 86.80 / 82.91 87.26 / - 87.48 / 84.05
IT-CONLL 85.51 / 81.12 85.45 / 81.10 84.98 / 80.23 85.46 / 80.66 86.49 / - 86.54 / 82.15
JA-CONLL 92.70 / 91.03 92.76 / 91.09 92.3- / - 93.00 / 91.03 93.20 / 91.2593.36 / - 93.24 /91.45
PT-CONLL 91.32 / 86.98 91.28 / 86.88 91.5- / - 90.36 / 85.77 91.36 / 87.2291.66 / - 91.69 / 87.70
SV-CONLL 90.84 / 85.30 91.00 /85.42 90.1- / - 89.32 / 82.06 90.50 / 83.01 90.32 / - 91.44 / 84.58
ZH-CTB 86.04 / 84.48† 86.14 / 84.57 84.38 / 82.62 86.63 / 84.95 86.77 / - 86.87 / 85.19

AVG 89.80 / 86.03 89.81 / 86.06 89.05 / 84.74 90.14 / 85.89 90.46 / - 90.63 / 86.65

Table 2: UAS/LAS for experiments on non-English treebanks.Numbers in bold are the highest scoring system. Zhang
and Nivre is a reimplementation of Zhang and Nivre (2011) with beams of size 64 and 256. Rush and Petrov are
the UAS results reported in Rush and Petrov (2012). Nth-order exact are implementations of exact 1st-3rd order
dependency parsing.†For reference, Zhang and Nivre (2011) report 86.0/84.4, which is previously the best result
reported on this data set.‡It should be noted that Rush and Petrov (2012) do not jointly optimize labeled and unlabeled
dependency structure, which we found to often help. This, plus extra features, accounts for the differences in UAS.

bels in the Penn2Malt label set, which results in lit-
tle non-structural ambiguity. In contrast, Stanford-
style dependencies contain a much larger set of la-
bels (50) with more fine-grained syntactic distinc-
tions (De Marneffe et al., 2006). Training and test-
ing a model using this dependency representation2

increases the number of search errors of the full
model to 126 out 2416 sentences. But that is still
only 5% of all sentences and significantly smaller
when measured per dependency.

6 Related Work

As mentioned in the introduction, there has been
numerous studies on trying to reconcile the rich-
features versus exact decoding trade-off in depen-
dency parsing. In the transition-based parsing lit-
erature this has included the use of beam search to
increase the search space (Duan et al., 2007; Johans-
son and Nugues, 2007; Titov and Henderson, 2007;
Zhang and Clark, 2008; Zhang and Nivre, 2011).
Huang and Sagae (2010) took a more principled ap-
proach proposing a method combining shift-reduce
parsing with dynamic programming. They showed
how feature signatures can be compiled into dy-

2This model gets 90.4/92.8 LAS/UAS which is comparable
to the UAS of 92.7 reported by Rush and Petrov (2012).

namic programming states and how best-first search
can be used to find the optimal transition sequence.
However, when the feature scope becomes large,
then the state-space and resulting search space can
be either intractable or simply non-practical to ex-
plore. Thus, they resort to an approximate beam
search that still exploring an exponentially-larger
space than greedy or beam-search transition-based
systems. One can view the contribution in this pa-
per as being the complement of the work of Huang
and Sagae (2010) for graph-based systems. Our ap-
proach also uses approximate decoding in order to
exploit arbitrary feature scope, while still exploring
an exponentially-large search space. The primary
difference is how the system is parameterized, over
dependency sub-graphs or transitions. Another criti-
cal difference is that a chart-based algorithm, though
still subject to search errors, is less likely to be hin-
dered by an error made at one word position be-
cause it searches over many parallel alternatives in a
bottom-up search as opposed to a left-to-right pass.

In the graph-based parsing literature, exact pars-
ing algorithms for higher-order features have been
studied extensively (McDonald and Pereira, 2006;
Carreras, 2007; Koo and Collins, 2010), but at a
high computational cost as increasing the order of a
model typically results in an asymptotic increase in

328

running time. ILP formulations of parsing (Riedel
and Clarke, 2006; Martins et al., 2009; Martins et
al., 2010) also allow for exact inference with higher-
order features, but again at a high computational
cost as ILP’s have, in the worst-case, exponential
run-time with respect to the sentence length. Stud-
ies that have abandoned exact inference have fo-
cused on sampling (Nakagawa, 2007), belief prop-
agation (Smith and Eisner, 2008), Lagrangian re-
laxation (Koo et al., 2010; Martins et al., 2011),
and more recently structured prediction cascades
(Weiss and Taskar, 2010; Rush and Petrov, 2012).
However, these approximations themselves are often
computationally expensive, requiring multiple de-
coding/sampling stages in order to produce an out-
put. All the methods above, both exact and approx-
imate, require specialized algorithms for every new
feature that is beyond the scope of the previous fac-
torization. In our method, the same parsing algo-
rithm can be utilized (Eisner’s+ cube pruning) just
with slight different feature signatures.

Our proposed parsing model draws heavily on the
work of Huang (2008). Huang introduced the idea
of “forest rescoring”, which uses cube pruning to
enable the incorporation of non-local features into
a constituency parsing model providing state-of-the
art performance. This paper is the extension of such
ideas to dependency parsing, also giving state-of-
the-art results. An important difference between our
formulation and forest rescoring is that we only have
one decoding pass and a single trained model, while
forest rescoring, as formulated by Huang (2008),
separates a generative base model from a follow-
ing discriminative re-ranking model. Hence, our
formulation is more akin to the one pass decoding
algorithm of Chiang (2007) for integrated decoding
with a language model in machine translation. This
also distinguishes it from previous work on depen-
dency parse re-ranking (Hall, 2007) as we are not
re-ranking/re-scoring the output of a base model but
using a single decoding algorithm and learned model
at training and testing.

This work is largely orthogonal to other attempts
to speed up chart parsing algorithms. This in-
cludes work on coarse-to-fine parsing (Charniak and
Johnson, 2005; Petrov and Klein, 2007; Rush and
Petrov, 2012), chart-cell closing and pruning (Roark
and Hollingshead, 2008; Roark and Hollingshead,

2009), and dynamic beam-width prediction (Boden-
stab et al., 2011). Of particular note, Rush and
Petrov (2012) report run-times far better than our
cube pruning system. At the heart of their system is
a linear time vine-parsing stage that prunes most of
the search space before higher-order parsing. This
effectively makes their final system linear time in
practice as the higher order models have far fewer
parts to consider. One could easily use the same
first-pass pruner in our cube-pruning framework.

In our study we use cube pruning only for de-
coding and rely on inference-based learning algo-
rithms to train model parameters. Gimpel and Smith
(2009) extended cube pruning concepts to partition-
function and marginal calculations, which would en-
able the training of probabilistic graphical models.

Finally, due to its use of the Eisner chart-parsing
algorithm as a backbone, our model is fundamen-
tally limited to predicting projective dependency
structures. Investigating extensions of this work to
the non-projective case is an area of future study.
Work on defining bottom-up chart-parsing algo-
rithms for non-projective dependency trees could
potentially serve as a mechanism to solving this
problem (Gómez-Rodrı́guez et al., 2009; Kuhlmann
and Satta, 2009; Gómez-Rodrı́guez et al., 2010).

7 Conclusion

In this paper we presented a method for general-
ized higher-order dependency parsing. The method
works by augmenting the dynamic programming
signatures of the Eisner chart-parsing algorithm and
then controlling complexity via cube pruning. The
resulting system has the flexibility to incorporate ar-
bitrary feature history while still exploring an ex-
ponential search space efficiently. Empirical results
show that the system gives state-of-the-art accura-
cies across numerous data sets while still maintain-
ing practical parsing speeds – as much as 4-5 times
faster than exact third-order decoding.

Acknowledgments: We would like to thank Sasha Rush
and Slav Petrov for help modifying their hypergraphpars-
ing code. We would also like to thank the parsing team
at Google for providing interesting discussions and new
ideas while we conducted this work, as well as comments
on earlier drafts of the paper.

329

References

N. Bodenstab, A. Dunlop, K. Hall, and B. Roark. 2011.
Beam-width prediction for efficient context-free pars-
ing. In Proc. ACL.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared
task on multilingual dependency parsing. InProc. of
CoNLL.

X. Carreras. 2007. Experiments with a higher-order
projective dependency parser. InProc. of the CoNLL
Shared Task Session of EMNLP-CoNLL.

E. Charniak and M. Johnson. 2005. Coarse-to-fine n-
best parsing and maxent discriminative reranking. In
Proc. ACL.

D. Chiang. 2007. Hierarchical phrase-based translation.
Computational Linguistics, 33(2).

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,
and Y. Singer. 2006. Online passive-aggressive al-
gorithms.Journal of Machine Learning Research.

M. De Marneffe, B. MacCartney, and C.D. Manning.
2006. Generating typed dependency parses from
phrase structure parses. InProc. of LREC.

X. Duan, J. Zhao, and B. Xu. 2007. Probabilistic parsing
action models for multi-lingual dependency parsing.
In Proc. of EMNLP-CoNLL.

J. Eisner. 1996. Three new probabilistic models for de-
pendency parsing: an exploration. InProc. of COL-
ING.

K. Gimpel and N.A. Smith. 2009. Cube summing,
approximate inference with non-local features, and
dynamic programming without semirings. InProc.
EACL.

C. Gómez-Rodrı́guez, M. Kuhlmann, G. Satta, and
D. Weir. 2009. Optimal reduction of rule length in lin-
ear context-free rewriting systems. InProc. NAACL.

C. Gómez-Rodrı́guez, M. Kuhlmann, and G. Satta. 2010.
Efficient parsing of well-nested linear context-free
rewriting systems. InProc. NAACL.

K. Hall. 2007. K-best spanning tree parsing. InProc. of
ACL.

L. Huang and S. Fayong. 2012. Structured perceptron
with inexact search. InProc. of NAACL.

L. Huang and K. Sagae. 2010. Dynamic programming
for linear-time incremental parsing. InProc. of ACL.

L. Huang. 2008. Forest reranking: Discriminative pars-
ing with non-local features. InProc. of ACL.

R. Johansson and P. Nugues. 2007. Incremental de-
pendency parsing using online learning. InProc. of
EMNLP-CoNLL.

T. Koo and M. Collins. 2010. Efficient third-order de-
pendency parsers. InProc. of ACL.

T. Koo, A. Rush, M. Collins, T. Jaakkola, and D. Son-
tag. 2010. Dual decomposition for parsing with non-
projective head automata. InProc. of EMNLP.

M. Kuhlmann and G. Satta. 2009. Treebank grammar
techniques for non-projective dependency parsing. In
Proc. EACL.

A. F. T. Martins, N. Smith, and E. P. Xing. 2009. Con-
cise integer linear programming formulations for de-
pendency parsing. InProc. of ACL.

A. F. T. Martins, N. Smith, E. P. Xing, P. M. Q. Aguiar,
and M. A. T. Figueiredo. 2010. Turbo parsers: Depen-
dency parsing by approximate variational inference.
In Proc. of EMNLP.

A. F. T. Martins, N. Smith, M. A. T. Figueiredo, and
P. M. Q. Aguiar. 2011. Dual decomposition with
many overlapping components. InProc of EMNLP.

R. McDonald and J. Nivre. 2007. Characterizing the
errors of data-driven dependency parsing models. In
Proc. of EMNLP-CoNLL.

R. McDonald and F. Pereira. 2006. Online learning of
approximate dependency parsing algorithms. InProc.
of EACL.

R. McDonald, K. Crammer, and F. Pereira. 2005. Online
large-margin training of dependency parsers. InProc.
of ACL.

T. Nakagawa. 2007. Multilingual dependency parsing
using global features. InProc. of EMNLP-CoNLL.

J. Nivre and R. McDonald. 2008. Integrating graph-
based and transition-based dependency parsers. In
Proc. of ACL.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nils-
son, S. Riedel, and D. Yuret. 2007. The CoNLL
2007 shared task on dependency parsing. InProc. of
EMNLP-CoNLL.

S. Petrov and D. Klein. 2007. Improved inference for
unlexicalized parsing. InProc. NAACL.

S. Riedel and J. Clarke. 2006. Incremental integer linear
programming for non-projective dependency parsing.
In Proc. of EMNLP.

B. Roark and K. Hollingshead. 2008. Classifying chart
cells for quadratic complexity context-free inference.
In Proc. COLING.

B. Roark and K. Hollingshead. 2009. Linear complexity
context-free parsing pipelines via chart constraints. In
Proce. NAACL.

A. Rush and S. Petrov. 2012. Efficient multi-pass depen-
dency pruning with vine parsing. InProc. of NAACL.

D. Smith and J. Eisner. 2008. Dependency parsing by
belief propagation. InProc. of EMNLP.

I. Titov and J. Henderson. 2007. Fast and robust mul-
tilingual dependency parsing with a generative latent
variable model. InProc. of EMNLP-CoNLL.

D. Weiss and B. Taskar. 2010. Structured prediction cas-
cades. InProc. of AISTATS.

330

Y. Zhang and S. Clark. 2008. A Tale of Two
Parsers: Investigating and Combining Graph-based
and Transition-based Dependency Parsing. InProc.
of EMNLP.

Y. Zhang and J. Nivre. 2011. Transition-based depen-
dency parsing with rich non-local features. InProc. of
ACL-HLT, volume 2.

331

