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Abstract

We derive a spectral method for unsupervised
learning of Weighted Context Free Grammars.
We frame WCFG induction as finding a Han-
kel matrix that has low rank and is linearly
constrained to represent a function computed
by inside-outside recursions. The proposed al-
gorithm picks the grammar that agrees with a
sample and is the simplest with respect to the
nuclear norm of the Hankel matrix.

1 Introduction

Weighted Context Free Grammars (WCFG) define
an important class of languages. Their expressivity
makes them good candidates for modeling a wide
range of natural language phenomena. This expres-
sivity comes at a cost: unsupervised learning of
WCFG seems to be a particularly hard task. And
while it is a well-studied problem, it is still to a great
extent unsolved.

Several methods for unsupervised learning of
WCFG have been proposed. Some rely on heuristics
that are used to build incrementally an approxima-
tion of the unknown grammar (Adriaans et al., 2000;
Van Zaanen, 2000; Tu and Honavar, 2008). Other
methods are based on maximum likelihood estima-
tion, searching for the grammar that has the largest
posterior given the training corpus (Baker, 1979;
Lari and Young, 1990; Pereira and Schabes, 1992;
Klein and Manning, 2002). Several Bayesian in-
ference approaches have also been proposed (Chen,
1995; Kurihara and Sato, 2006; Liang et al., 2007;
Cohen et al., 2010). These approaches perform pa-

rameter estimation by exploiting Markov sampling
techniques.

Recently, for the related problem of unsupervised
dependency parsing, Gormley and Eisner (2013)
proposed a new way of framing the max-likelihood
estimation. In their formulation the problem is ex-
pressed as an integer quadratic program subject to
non-linear constraints. They exploit techniques from
mathematical programming to solve the resulting
optimization.

In spirit, the work by Clark (2001; 2007) is prob-
ably the most similar to our approach since both ap-
proaches share an algebraic view of the problem. In
his case the key idea is to work with an algebraic
representation of a WCFG. The problem of recover-
ing the constituents of the grammar is reduced to the
problem of identifying its syntactic congruence.

In the last years, multiple spectral learning algo-
rithms have been proposed for a wide range of mod-
els (Hsu et al., 2009; Bailly et al., 2009; Bailly et al.,
2010; Balle et al., 2011; Luque et al., 2012; Cohen
et al., 2012). Since the spectral approach provides a
good thinking tool to reason about distributions over
Σ∗, the question of whether they can be used for un-
supervised learning of WCFG seems natural. Still,
while spectral algorithms for unsupervised learning
of languages can learn regular languages, tree lan-
guages and simple dependency grammars, the fron-
tier to WCFG seems hard to reach.

In fact, the most recent theoretical results on spec-
tral learning of WCFG do not seem to be very en-
couraging. Recently, Hsu et al. (2012) showed that
the problem of recovering the joint distribution over
PCFG derivations and their yields is not identifiable.
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Although, for some simple grammar subclasses (e.g.
independent left and right children), identification in
the weaker sense (over the yields of the grammar)
implies strong identification (e.g. over joint distri-
bution of yields and derivations). In their paper, they
propose a spectral algorithm based on a generaliza-
tion of the method of moments for these restricted
subclasses.

Thus one open direction for spectral research con-
sists on defining subclasses of context free lan-
guages that can be learned (in the strong sense) from
observations of yields. Yet, an alternative research
direction is to consider learnability in the weaker
sense. In this paper we take the second road, and
focus on the problem of approximating the distribu-
tion over yields generated by a WCFG.

Our main contribution is to present a spectral al-
gorithm for unsupervised learning of WCFG. Fol-
lowing ideas from Balle et al. (2012), the algo-
rithm is framed as a convex optimization where we
search for a low-rank matrix satisfying two types
of constraints: (1) Constraints derived from observ-
able statistics over yields; and (2) Constraints de-
rived from certain recurrence relations satisfied by a
WCFG. Our derivations of the learning algorithm il-
lustrate the main ingredients behind the spectral ap-
proach to learning functions over Σ∗ which are: (1)
to exploit the recurrence relations satisfied by the
target family of functions and (2) provide algebraic
formulations of these relations.

We alert the reader that although we are able to
frame the problem as a convex optimization, the
number of variables involved is quite large and pro-
hibits a practical implementation of the method on
a realistic scenario. The experiments we present
should be regarded as examples designed to illus-
trate the behavior of the method. More research
is needed to make the optimization more efficient,
and we are optimistic that such improvements can
be achieved by exploiting problem-specific proper-
ties of the optimization. Regardless of this, ours is
a novel way of framing the grammatical inference
problem.

The rest of the paper is organized as follows. Sec-
tion 2 gives preliminaries on WCFG and the type of
functions we will learn. Section 3 establishes that
spectral methods can learn a WCFG from a Han-
kel matrix containing statistics about context-free

cuts. Section 4 presents the unsupervised algorithm,
where we formulate grammar induction as a low-
rank optimization. Section 5 presents experiments,
and finally we conclude the paper.

Notation Let Σ be an alphabet. We use σ to de-
note an arbitrary symbol in Σ. The set of all fi-
nite strings over Σ is denoted by Σ?, where we
write λ for the empty string. We also use the set
Σ+ = Σ? \ {λ}.

We use bold letters to represent column vectors
v and matrices M . We use In to denote the n-
dimensional identity matrix. We use M+ to de-
note the Moore-Penrose pseudoinverse of some ma-
trixM . M⊗M ′ is the Kronecker product between
matricesM ∈ Rm×n andM ′ ∈ Rp×q resulting in a
matrix in Rmp×nq. The rest of notation will be given
as needed.

2 Weighted Context Free Grammars

In this section we define Weighted Context Free
Grammars (WCFG). We start with a classic defini-
tion and then describe an algebraic form of WCFG
that will be used throughout the paper. We also de-
scribe the fundamental recursions in WCFG.

2.1 WCFG in Classic Form

A WCFG over Σ is a tuple Ḡ =
〈V,R, T, w?, wT , wR〉 where

• V is the set of non-terminal symbols. We as-
sume that V = {1, . . . , n} for some natural
number n, and that V ∩ Σ = ∅.
• R is a set of binary rules of the form i → j k

where i, j, k ∈ V .
• T is a set of unary rules of the form i → σ

where i ∈ V and σ ∈ Σ.
• w? : V → R, with w?(i) being the weight of

starting a derivation with non-terminal i.
• wT : V × Σ → R, with wT (i → σ) being the

weight of rule rewriting i into σ.
• wR : V × V × V → R, with wR(i → j k)

being the weight of rewriting i into j k.

A WCFG Ḡ computes a function gḠ : Σ+ → R
defined as

gḠ(x) =
∑
i∈V

w?(i)β̄Ḡ(i
?
=⇒ x) , (1)

625



where we define the inside function β̄Ḡ : V ×Σ+ →
R recursively:

β̄Ḡ(i
?
=⇒ σ) = wT (i→ σ) (2)

β̄Ḡ(i
?
=⇒ x) =

∑
j,k∈V

x1,x2∈Σ+

s.t. x=x1x2

wR(i→ j k) (3)
β̄Ḡ(j

?
=⇒ x1)β̄Ḡ(k

?
=⇒ x2) ,

where in the second case we assume |x| > 1. The
inside function β̄Ḡ(i

?
=⇒ x) exploits the fundamen-

tal inside recursion in WCFG (Baker, 1979; Lari and
Young, 1990). We will find useful to define the out-
side function ᾱḠ : Σ?×V ×Σ? → R defined recur-
sively as:

ᾱḠ(λ; i;λ) = w?(i) (4)

ᾱḠ(x; i; y) =
∑
j,k∈V

x1∈Σ?,x2∈Σ+

s.t. x=x1x2

wR(j → k i)· (5)
ᾱḠ(x1; j; y) · β̄Ḡ(k

?
=⇒ x2)

+
∑
j,k∈V

y1∈Σ+,y2∈Σ?

s.t. y=y1y2

wR(j → i k)·
ᾱḠ(x; j; y2) · β̄Ḡ(k

?
=⇒ y1) ,

where in the second case we assume that either
x 6= λ or y 6= λ.

For x, z ∈ Σ? and y ∈ Σ+ we have that∑
i∈V

ᾱḠ(x; i; z) · β̄Ḡ(i
?
=⇒ y) (6)

is the weight that the grammar Ḡ assigns to a string
xyz that has a cut or bracketing around y. Techni-
cally, it corresponds to the sum of the weights of all
derivations that have a constituent spanning y. In
particular we have that

gḠ(x) =
∑
i

ᾱḠ(λ; i;λ) · β̄Ḡ(i
?
=⇒ x) .

If x is a string of lengthm, and x[t:t′] is the substring
of x from positions t to t′, it also happens that

gḠ(x) =
∑
i

ᾱḠ(x[1:t−1]; i;x[t+1:m])·β̄Ḡ(i
?
=⇒ x[t]))

for any t between 1 and m.
In this paper we will make frequent use of inside

and outside quantities. Notationally, for outsides the
semi-colon between two strings, i.e. x; z, will sim-
bolize a cut where we can insert an inside string y.

Finally, we note that Probabilistic Context Free
Grammars (PCFG) are a special case of WCFG
where: w?(i) is the probability to start a derivation
with non-terminal i; wR(i → j k) is the condi-
tional probability of rewriting nonterminal i into j
and k; wT (i → σ) is the probability of rewriting i
into symbol σ;

∑
iw?(i) = 1; and for each i ∈ V ,∑

j,k wR(i → j k) +
∑

σ wT (i → σ) = 1. Un-
der these conditions the function gḠ is a probability
distibution over Σ+.

2.2 WCFG in Algebraic Form

We now define a WCFG in algebraic form. A
Weighted Context Free Grammar (WCFG) over Σ
with n states is a tuple G = 〈α?, {βσ},A〉 with:

• An initial vector α? ∈ Rn.
• Terminal vectors βσ ∈ Rn for σ ∈ Σ.
• A bilinear operatorA ∈ Rn×n2

.

A WCFG G computes a function gG : Σ? → R
defined as

gG(x) = α>? βG(x) (7)

where the inside function βG : Σ+ → Rn is

βG(σ) = βσ (8)

βG(x) =
∑

x1,x2∈Σ+

x=x1x2

A(βG(x1)⊗ βG(x2)) (9)

We will define the outside function αG : Σ? ×
Σ? → Rn as:

αG(λ;λ) = α? (10)

αG(x; z)> =
∑

x1∈Σ?,x2∈Σ+

x=x1x2

αG(x1; z)>A(βG(x2)⊗ In)

+
∑

z1∈Σ+,z2∈Σ?

z=z1z2

αG(x; z2)>A(In ⊗ βG(z1)) (11)

For x, z ∈ Σ? and y ∈ Σ+ we have that

αG(x; z)>βG(y) (12)

is the weight that the grammar assigns to the string
xyz with a cut around y. In particular, gG(x) =
αG(λ;λ)>βG(x).
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Let us make clear that a WCFG is the same
device in classic or algebraic forms. If Ḡ =
〈V,R, T, w?, wT , wR〉 and G = 〈α?, {βσ},A〉, the
mapping is:

w?(i) = α?(i) (13)

wT (i→ σ) = βσ[i] (14)

wR(i→ j k) = A[i, j, k] (15)

β̄Ḡ(i
?
=⇒ x) = βG(x)[i] (16)

ᾱḠ(x; i; z) = αG(x; z)[i] (17)

See Section A.1 for a proof of Eq. 16 and 17.

3 WCFG and Hankel Matrices

In this section we describe Hankel matrices for
WCFG. These matrices explicitly capture inside-
outside recursions employed by WCFG functions,
and are key to a derivation of a spectral learning al-
gorithm that learns a grammar G using statistics of
a training sample.

Let us define some sets. We say that I1 = Σ+

is the set of inside strings. The set of composed in-
side strings I2 is the set of elements (x, x′), where
x, x′ ∈ Σ+. Intuitively (x, x′) represents two adja-
cent spans with an operation, i.e., it keeps the trace
of the operation that composes x with x′ and yields
xx′. We will use the set I = I1 ∪ I2.

The set of outside contextsO is the set containing
elements 〈x; z〉, where x, z ∈ Σ?. Intuitively, 〈x; z〉
represents a context where we can insert an inside
element y in between x and z, yielding xyz.

Consider a function f : O × I → R. The Hankel
matrix of f is the bi-infinite matrix Hf ∈ RO×I
such thatHf (o, i) = f(o, i).

In practice we will work with finite sub-blocks of
Hf . To this end we will employ the notion of basis
B = (P,S), where {〈λ, λ〉} ⊆ P ⊆ O is a set
of outside contexts and Σ ⊆ S ⊆ I1 is a set of
inside strings. We will use p = |P| and s = |S|.
Furthermore, we define the inside completion of S
as the set S† = {(x, x′) | x, x′ ∈ S}. Note that
S† ⊆ I2. We say that B† = (P,S†) is the inside
completion of B.

The sub-block of Hf defined by B is the p × s
matrix HB ∈ RP×S with HB(o, i) = Hf (o, i) =
f(o, i). In addition toHB, we are interested in these
additional finite vectors and matrices:

• h? ∈ RS is the s-dimensional vector with co-
ordinates h?(x) = f(〈λ, λ〉, x).

• hσ ∈ RP is the p-dimensional vector with co-
ordinates hσ(o) = f(o, σ).

• HA ∈ RP×S† with HA(o, (x1, x2)) =
f(o, (x1, x2)).

3.1 Hankel Factorizations

If f is computed by a WCFG G, then Hf has rank
n factorization. To see this, consider the follow-
ing matrices. First a matrix S ∈ Rn×I1 of inside
vectors for all strings, with column x taking value
Sx = βG(x). Then a matrix P ∈ RO×n of out-
side vectors for all contexts, with row 〈x; z〉 tak-
ing value P 〈x;z〉 = αG(x; z). It is easy to see that
Hf = PS, since Hf (〈x; z〉, y) = P 〈x;z〉Sy =

αG(x; z)>βG(y). ThereforeHf has rank n.
The same happens for sub-blocks. If HB is the

sub-block associated with basis B = (P,S), then
the sub-blocks P B ∈ RP×n and SB ∈ Rn×S of P
and S also accomplish that HB = P BSB . It also
happens that

h>? = α>? SB (18)

hσ = P Bβσ (19)

HA = P BA(SB ⊗ SB) . (20)

We say that a basis B is complete for f if
rank(HB) = rank(Hf ). The following is a key
result for spectral methods.

Lemma 1. Let B = (P,S) be a complete basis of
dimension n for a function f and let HB ∈ RP×S
be the Hankel sub-block of f for B. Let h?, hσ and
HA be the additional matrices for B. IfHB = PS
is a rank n factorization, then the WCFG G =
〈α?, {βσ},A〉 with

α>? = h>? S
+ (21)

βσ = P+hσ (22)

A = P+HA(S ⊗ S)+ (23)

computes f .

See proof in Section A.2.
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3.2 Supervised Spectral Learning of WCFG
The spectral learning method directly exploits
Lemma 1. In a nutshell, the spectral method is:

1. Choose a complete basis B = (P,S) and a di-
mension n.

2. Use training data to compute estimates of the
necessary Hankel matrices: HB, h?, hσ,HA.

3. Compute the SVD ofHB,HB = UΛV >.

4. Create a truncated rank n factorization of HB
asP nSn, havingP n = UnΛn andSn = V >n ,
where we only consider the top n singular val-
ues/vectors of Λ,U ,V .

5. Use Lemma 1 to computeG, usingP n and Sn.

Because of Lemma 1, if B is complete and we
have access to the trueHB, h?, hσ,HA of a WCFG
target function g∗, then the algorithm will compute
a G that exactly computes g∗. In practice, we only
have access to empirical estimates of the Hankel ma-
trices. In this case, there exist PAC-style sample
complexity bounds that state that gG will be a close
approximation to g∗ (Hsu et al., 2009; Bailly et al.,
2009; Bailly et al., 2010).

The parameters of the algorithm are the basis and
the dimension of the grammar n. One typically em-
ploys some validation strategy using held-out data.
Empirically, the performance of these methods has
been shown to be good, and similar to that of EM
(Luque et al., 2012; Cohen et al., 2013). It is also
important to mention that in the case that the target
g∗ is a probability distribution, the function gG will
be close to g∗, but it will only define a distribution in
the limit: in practice it will not sum to one, and for
some inputs it might return negative values. This is a
practical difficulty of spectral methods, for example
to apply evaluation metrics like perplexity which are
only defined for distributions.

4 Unsupervised Learning of WCFG

In the previous section we have exposed that if we
have access to estimates of a Hankel matrix of a
WCFG G, we can recover G. However, the statis-
tics in the Hankel require access to strings that have
information about context-free cuts. We will assume
that we only have access to statistics about plain
strings of a distribution, i.e. p(x), which we call

observations. In this scenario, one natural idea is
to search for a Hankel matrix that agrees with the
observations. The method we present in this sec-
tion frames this problem as a low-rank matrix op-
timization problem. We first characterize the space
of solutions to our problem, i.e. Hankel matrices
associated with WCFG that agree with observable
statistics. Then we present the method.

4.1 Characterization of a WCFG Hankel
In this section we describe valid WCFG Hankel ma-
trices using linear constraints.

We first describe an inside-outside basis that is
an extension of the one in the previous section. In-
side elements are the same, namely I = I1 ∪ I2,
where I1 are strings (x) and I2 are composed
strings (x, x′). The set of outside contexts O1 is
the set containing elements 〈x; z〉, defined as be-
fore. The set of composed outside contexts has el-
ements 〈x, x′; z〉, and 〈x; z′, z〉, where x, z ∈ Σ?

and x′, z′ ∈ Σ+. These outside contexts keep an
operation open in one of the sides. For example, if
we consider 〈x; z′, z〉 and insert a string y, we obtain
x(y, z′)z, where we use (y, z′) to explicitly denote a
composed inside string. We will use O = O1 ∪ O2.

In this section, we will assume that I and O are
finite and closed. By closed, we mean that:

• (x) ∈ I ⇒ (x1, x2) ∈ I for x = x1x2

• (x1, x2) ∈ I ⇒ x1 ∈ I, x2 ∈ I
• 〈x; z〉 ∈ O ⇒ 〈x1, x2; z〉 ∈ O for x = x1x2

• 〈x; z〉 ∈ O ⇒ 〈x; z1, z2〉 ∈ O for z = z1z2

• 〈x1, x2; z〉 ∈ O ⇒ (x2) ∈ I
• 〈x; z1, z2〉 ∈ O ⇒ (z1) ∈ I

We will consider a Hankel matrix H ∈ RO×I .
Some entries of this matrix will correspond to ob-
servable quantities. Specifically, for any string x ∈
I1 for which we know p(x) we can define the fol-
lowing observable constraint:

p(x) = H(〈λ;λ〉, (x)) (24)

The rest of entries of H correspond to a string
with an inside-outside cut, and these are not ob-
servable. Our method will infer the values of these
entries. The following constraints will ensure that
the matrix H is a well defined Hankel matrix for
WCFG:
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• Hankel constraints: ∀ 〈x; z〉 ∈ O, (y1, y2) ∈ I

H(〈x; z〉, (y1, y2)) = H(〈x, y1; z〉, (y2))

= H(〈x; y2, z〉, (y1)) (25)

• Inside constraints: ∀ o ∈ O, (x) ∈ I

H(o, (x)) =
∑

x=x1x2

H(o, (x1, x2)) (26)

• Outside constraints: ∀ 〈x; z〉 ∈ O, i ∈ I

H(〈x; z〉, i) =
∑

x=x1x2

H(〈x1, x2; z〉, i)

+
∑

z=z1z2

H(〈x; z1, z2〉, i) (27)

Constraint (25) states that composition operations
that result in the same structure should have the same
value. Constraints (26) and (27) ensure that the val-
ues in the Hankel follow the inside-outside recur-
sions that define the computations of a WCFG func-
tion. The following lemma formalizes this concept.
LetHε be the sub-block ofH restricted toO1×I1,
i.e. without compositions.

Lemma 2. If H satisfies constraints (25),(26) and
(27), and if rank(H) = rank(Hε) then there exists
a WCFG that generatesHε.

See proof in Section A.3.

4.2 Convex Optimization

We now present the core optimization program be-
hind our method. Let vec(H) be a vector in R|O|·|I|
corresponding to all coefficients of H in column
vector form. Let O be a matrix such that O ·
vec(H) = z represents the observation constraints.
For example, if i-th row of O corresponds to the
Hankel coefficientH(〈λ;λ〉, (x)) then z(i) = p(x).
Let K be a matrix such that K · vec(H) = 0 rep-
resents the constraints (25), (26) and (27).

The optimization problem is:

minimize
H

rank(H)

subject to ‖O · vec(H)− z‖2 ≤ µ
K · vec(H) = 0

‖H‖2 ≤ 1.

(28)

Intuitively, we look for H that agrees with the ob-
servable statistics and satisfies the inside-outside
constraints. µ is a parameter of the method that con-
trols the degree of error in fitting the observables z.
The ‖H‖2 ≤ 1 is satisfied by any Hankel matrix
derived from a true distribution, and is used to avoid
incoherent solutions.

The above optimization problem, however, is
computationally hard because of the rank objective.
We employ a common relaxation of the rank objec-
tive, based on the nuclear norm as in (Balle et al.,
2012). The optimization is:

minimize
H

‖H‖∗

subject to ‖O · vec(H)− z‖2 ≤ µ
K · vec(H) = 0

‖H‖2 ≤ 1.

(29)

To optimize (29) we employ a projected gradient
strategy, similar to the FISTA scheme proposed by
Beck and Teboulle (2009). The method alternates
between separate projections for the observable con-
straints, the `2 norm, the inside-outside constraints,
and the nuclear norm. Of these, the latter two are the
most expensive.

Elsewhere, we develop theoretical properties of
the optimization (28) applied to finite-state transduc-
tions (Bailly et al., 2013). One can prove that there is
theoretical identifiability of the rank and the param-
eters of an FST distribution, using a rank minimiza-
tion formulation. However, this problem is NP-hard,
and it remains open whether there exists a polyno-
mial method with identifiability results. These re-
sults should generalize to WCFG.

5 Experiments

In this section we describe some experiments with
the learning algorithms for WCFG. Our goal is
to verify that the algorithms can learn some basic
context-free languages, and to study the possibility
of using them on real data.

5.1 Synthetic Experiments
We performed experiments on synthetic data, ob-
tained by choosing a PCFG with random parameters
(∈ [0, 1]), with a normalization step in order to get
a probability distribution. We built the Hankel ma-
trix from the inside basis {(x)}x∈Σ and outside basis
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Figure 1: KL divergence for spectral and EM methods,
unsupervised and supervised, for different sizes of learn-
ing sample, on log-log scales. Results are averages over
50 random target PCFG with 2 states and 2 symbols.

{〈λ;λ〉} ∪ {〈x;λ〉, 〈λ;x〉}x∈Σ. The composed in-
sides for the operator matrix are thus {(x, y)}x,y∈Σ.
The matrix in the optimizer has the following struc-
ture

H =


(y) · · · (y, z)

〈λ;λ〉 (λ; y;λ) · · · (λ; y, z;λ)
〈x;λ〉 (x; y;λ) · · · (x; y, z;λ)
〈λ;x〉 (λ; y;x) · · · (λ; y, z;x)

... · · · · · · · · ·


The constraints we use are:

K ={H((x; y;λ)) = H((λ;x; y))}x,y∈Σ∪
{H((λ;x; y)) = H((λ;x, y;λ))}x,y∈Σ∪
{H((x; y;λ)) = H((λ;x, y;λ))}x,y∈Σ

and

O ={H((λ;x;λ)) = pS(x)}x∈Σ ∪
{H((λ;x; y)) = pS(xy)}x,y∈Σ ∪

{H((x; y, z;λ)) +H((λ;x, y; z)) = pS(xyz)}x,y,z∈Σ

We use pS to denote the empirical distribution.
Those are simplified versions of the Hankel, inside,
outside and observation constraints. The set O is
built from the following remarks: (1) (xy) = (x, y)
and (2) (xyz) = (xy, z)+(x, yz). The method uses
statistics for sequences up to length 3.

The algorithm we use for the unsupervised spec-
tral method is a simplified version: we use alter-
natively a hard projection on the constraints (by
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Figure 2: KL divergence for unsupervised and supervised
spectral methods, for different sizes of learning sample,
on log-log scales. Results are averages over 50 random
target PCFG with 3 states and 6 symbols.

projecting iteratively on each constraint), and a
thresholding-shrinkage operation for the target di-
mension. We use the same trick as FISTA for the
update. We finally use the regular spectral method
on this matrix to get our model.

We compare this method with an unsupervised
EM, and also with supervised versions of spectral
method and EM. We compare the accuracy of the
different models in terms of KL-divergence for se-
quences up to length 10. We run 50 optimization
steps for the unsupervised spectral method, and 200
iterations for the EM methods. Figure 1 shows the
results, corresponding the the geometric mean over
50 experiments on random targets of 2 symbols and
2 states.

For sample size greater than 105, the unsupervised
spectral method seems to provide better solutions
than both EM and supervised EM. The solution, in
terms of KL-divergence, is comparable to the one
obtained with the supervised spectral method. The
computation time of unsupervised spectral method
is almost constant w.r.t. the sample size, around
1.67s, while computation time of unsupervised EM
(resp. supervised EM) is 6.103s (resp. 2.104s) for
sample size 106.

Figure 2 presents learnings curve for random tar-
gets with 3 states and 6 symbols. One can see that,
for big sample sizes (109), the unsupervised spectral
method is losing accuracy compared to the super-
vised method. This is due to a lack of information,
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Figure 3: Learning errors for different models in terms of
the size of the basis.

and could be overcome by considering a greater ba-
sis (e.g. inside sequences up to length 2 or 3).

5.2 Dyck Languages

We now present experiments using the following
PCFG:

S → S S (0.2) | aS b (0.4) | a b (0.4)

This PCFG generates a probabilistic version of the
well-known Dyck language or balanced parenthesis
language, an archetypical context-free language.

We do experiments with the following models and
algorithms:

• WFA: a Weighted Finite Automata learned us-
ing spectral methods as described in (Luque et
al., 2012). Parameters: number of states and
size of basis.

• Supervised Spectral: a WCFG learned from
structured strings using the algorithm of sec-
tion 3.2. We choose as basis the most frequent
insides and outsides observed in the training
data. The size of the basis is determined by a
parameter f called the basis factor, that deter-
mines the proportion of total insides and out-
sides that will be in the basis.

• Unsupervised Spectral: a WCFG learned from
strings using the algorithm of Section 4. The
basis is like in the supervised case, but since
context-free cuts in the strings are not observed,

basis size of H obs. i/o ctr.
1 × 11 39 × 159 34 162
6 × 14 1,163 × 764 146 6,360

12 × 18 4,462 × 2,239 322 25,374
18 × 22 9,124 × 4,149 479 52,524
24 × 26 15,755 × 6,858 657 89,718
30 × 29 19,801 × 8,545 769 112,374
36 × 34 27,989 × 11,682 916 156,690
42 × 37 3,638 × 15,026 1,035 200,346
48 × 41 45,192 × 18,235 1,157 244,398
54 × 45 53,741 × 21,196 1,281 284,466
60 × 48 60,844 × 23,890 1,382 318,354

Table 1: Problem sizes for the WSJ10 training corpus.

basis / n 5 10 15 20
1 × 11 1.265 10−3

6 × 14 7.06 10−4 6.92 10−4

12 × 18 7.30 10−4 6.28 10−4 6.01 10−4

18 × 22 7.31 10−4 6.29 10−4 5.84 10−4 5.59 10−4

24 × 26 7.35 10−4 6.39 10−4 5.88 10−4 5.31 10−4

30 × 29 7.34 10−4 6.41 10−4 5.86 10−4 5.30 10−4

Table 2: Experiments with the unsupervised spectral
method on the WSJ10 corpus. Results are in terms of
expected L1 on the training set, for different basis and
numbers of states.

all possible inside and outsides of the sample
(i.e. all possible substrings and contexts) are
considered.

We generate a training set by sampling 4,000
strings from the target PCFG and counting the rel-
ative frequency of each. For the supervised model,
we generate strings paired with their context-free
derivation. To measure the quality of the learned
models, we use the L1 distance to the target distri-
bution over a fixed set of strings Σ≤n, for n = 7.1

Figure 3 shows the results for the different mod-
els and for different basis sizes (in terms of the basis
factor f ). Here we can clearly see that the WCFG
models, even the unsupervised one, outperform the
WFA in reproducing the target distribution.

5.3 Natural Language Experiments
Now we present some preliminar tests using natural
language data. For these tests, we used the WSJ10
subset of the Penn Treebank, as Klein and Manning
(2002). This dataset consists of the sentences of
length ≤ 10 after filtering punctuation and currency.
We removed lexical items and mapped the POS tags

1Given two functions f1 and f2 over strings, the L1 distance
is the sum of the absolute difference over all strings in a set:∑

x |f1(x)− f2(x)|.
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to the Universal Part-of-Speech Tagset (Petrov et al.,
2012), reducing the alphabet to a set of 11 symbols.

Table 1 shows the size of the problem for differ-
ent basis sizes. As described in the previous sub-
section for the unsupervised case, we obtain the ba-
sis by taking the most frequent observed substrings
and contexts. We then compute all yields that can
be generated with this basis, and close the basis to
include all possible insides and outsides with oper-
ations completions, such that we create a Hankel as
described in Section 4.1. Table 1 shows, for each
base, the size of H we induce, the number of ob-
servable constraints (i.e. sentences we train from),
and the number of inside-outside constraints.

With the current implementation of the optimizer
we were only able to run the unsupervised learning
for small basis sizes. Table 2 shows the expected L1

on training data. For a fixed basis, as we increase
the number of states we see that the error decreases,
showing that the method is inducing a Hankel matrix
that explains the observable statistics.

6 Conclusions

We have presented a novel approach for unsuper-
vised learning of WCFG. Our method combines in-
gredients of spectral learning with low-rank convex
optimization methods.

Our method optimizes over a matrix that, even if it
grows polynomially with respect to the size of train-
ing, results in a large problem. To scale the method
to learn languages of the complexity of natural lan-
guages we would need to identify optimization algo-
rithms specially suited for this problem.

A Proofs

A.1 Proof of Inside-Outside Eq. 16 and 17
For the inside function, the base case is trivial. By
induction:

βG(x)[i] =
∑

x=x1x2

A(βG(x1)⊗ βG(x2))[i]

=
∑
j,k∈V
x=x1x2

A[i, j, k] · βG(x1)[j] · βG(x2)[k]

=
∑
j,k∈V
x=x1x2

wR(i→ j k) · β̄Ḡ(j
?
=⇒ x1) · β̄Ḡ(k

?
=⇒ x2)

= β̄Ḡ(i
?
=⇒ x)

For the outside function, let ei be an n-
dimensional vector with coordinate i to 1 and the
rest to 0. We reformulate the mapping as:

αG(x; z)>ei = ᾱḠ(x; i; z) (30)

The base case is trivial by definitions. We use the
property of Kronecker products that (v ⊗ In)v′ =
(v⊗ v′) and (In⊗ v)v′ = (v′⊗ v) for v,v′ ∈ Rn.
We first look at one of the terms of αG(x; z)>ei:

αG(x1; z)>A(βG(x2)⊗ In)ei

= αG(x1; z)>A(βG(x2)⊗ ei)

=
∑
j,k∈V

(αG(x1; z)>ej) ·A[j, k, i] · βG(x2)[k]

=
∑
j,k∈V

ᾱḠ(x1; j; z) · wR(j → k i) · β̄Ḡ(k
?
=⇒ x2)

Applying the distributive property in αG(x; z)>ei it
is easy to see that all terms are mapped to the corre-
sponding term in ᾱḠ(x; i; z).

A.2 Proof of Lemma 1

Let G′ = 〈α′?, {β′σ},A′〉 be a WCFG for f that in-
duces a rank factorizationH = P ′S′. We first show
that there exists an invertible matrixM that changes
the basis of the operators of G into those of G′.
Define M = S′S+ and note that P+P ′S′S+ =
P+HS+ = I implies that M is invertible with
M−1 = P+P ′. We now check that the operators
of G correspond to the operators of G′ under this
change of basis. First we see that

A = P+HA(S ⊗ S)+

= P+P ′A′(S′ ⊗ S′)(S ⊗ S)+

= M−1A′(S′S+ ⊗ S′S+)

= M−1A′(M ⊗M) .

Now, since h? = α′>? S
′ and hσ = P ′β′σ , it follows

that α>? = α′?
>M and βσ = M−1β′σ.

Finally we check that G and G′ compute the
same function, namely f(o, i) = αG(o)>βG(i) =
αG′(o)

>βG′(i). We first see that βG(x) =
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M−1βG′(x):

βG(σ) = βσ = M−1β′σ (31)

βG(x) =
∑

x=x1x2

A(βG(x1)⊗ βG(x2)) (32)

=
∑

x=x1x2

M−1A′(M ⊗M)(βG(x1)⊗ βG(x2))

= M−1
∑

x=x1x2

A′(MβG(x1)⊗MβG(x2))

= M−1
∑

x=x1x2

A′(βG′(x1)⊗ βG′(x2))

It can also be shown that αG(x; z)> =
αG′(x; z)>M . One must see that in any term:

αG(x1; z)>A(βG(x2)⊗ In) (33)

= αG(x1; z)>M−1A′(M ⊗M)(βG(x2)⊗ In)

= αG′(x1; z)>A′(MβG(x2)⊗MIn)

= αG′(x1; z)>A′(βG′(x2)⊗ In)M

and the relation follows. Finally:

αG(x; z)>βG(y) (34)

= αG′(x; z)>MM−1βG′(y)

= αG′(x; z)>βG′(y)

A.3 Proof of Lemma 2
We will use the following sub-blocks ofH:

• Hε is the sub-block restricted to O1 × I1, i.e.
without compositions.
• HA is the sub-block restricted to O1 × I2, i.e.

inside compositions.
• H ′A is the sub-block restricted to O2 × I1, i.e.

outside compositions.
• h>? ∈ RI1 is the row ofHε for 〈λ;λ〉.
• h(x) ∈ RO1

is the column ofHε for (x).

• h(x1,x2) ∈ RO1
is the column of HA for

(x1, x2).
• h′〈x;z〉 ∈ RI1 is the row of hε for 〈x; z〉.
• h′〈x1,x2;z〉 and h′〈x;z1,z2〉 be the rows in RI1 of
h′A for 〈x1, x2; z〉 and 〈x; z1, z2〉).

One supposes that rank(Hε) = rank(H). We de-
fine G as

α>? = h>?H
+
ε , βa = h(a),A = HA(H+

ε ⊗H+
ε )

Lemma 3. One has that βG(x) = h(x), and
βG(x1, x2) = h(x1,x2).

Proof. By induction. For sequences of size 1, one
has βG(x) = βx = h(x). For the recursive case,
let e(x) be a vector in RI1 with 1 in the coordinate
of (x) in Hε. Let e(x,y) be a vector in RI2 with 1
in the coordinate of (x, y) in HA. For βG(x, y),
one has H+

ε βG(x) = e(x), and H+
ε βG(y) =

e(y), thus H+
ε βG(x) ⊗ H+

ε βG(y) = e(x,y) and
HA(H+

ε βG(x) ⊗ H+
ε βG(y)) = h(x,y). Finally,

one has that βG(x) =
∑

x=x1x2
βG(x1, x2) =∑

x=x1x2
h(x1,x2) = h(x1x2x3) by the equation

(26).

One has a symmetric result for outside vectors. We
define G′ as

α>? = h>? , βa = H+
ε h(a),A = H+

εHA

Lemma 4. One has that αG′(〈x; z〉)> =
h′〈x;z〉, αG′(〈x1, x2; z〉)> = h′〈x1,x2;z〉 and
αG′(〈x; z1, z2〉)> = h′〈x;z1,z2〉.

Proof. (Sketch) Equation (31) is used in the same
way than (27) before. Equation (25) is used to en-
sure a link betweenH ′A andHA.

Let g be the mapping computed by G and
G′. One has that g(o, i) = αG′(o)

>βG′(i) =
αG(o)>βG(i) = αG′(o)

>H+
ε βG(i) = Hε(o, i).
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Raphaël Bailly, Amaury Habrard, and François Denis.
2010. A spectral approach for probabilistic grammat-
ical inference on trees. In Proceedings of the 21st
International Conference Algorithmic Learning The-
ory, Lecture Notes in Computer Science, pages 74–88.
Springer.
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