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Abstract

We introduce a new approach to argumen-
tation mining that we applied to a parallel
German/English corpus of short texts an-
notated with argumentation structure. We
focus on structure prediction, which we
break into a number of subtasks: relation
identification, central claim identification,
role classification, and function classifica-
tion. Our new model jointly predicts dif-
ferent aspects of the structure by combin-
ing the different subtask predictions in the
edge weights of an evidence graph; we
then apply a standard MST decoding algo-
rithm. This model not only outperforms
two reasonable baselines and two data-
driven models of global argument struc-
ture for the difficult subtask of relation
identification, but also improves the results
for central claim identification and func-
tion classification and it compares favor-
ably to a complex mstparser pipeline.

1 Introduction

Argumentation mining is a task that has drawn
increased interest in the last years. In its full-
fledged version, it seeks to automatically recog-
nize the structure of argumentation in a text by
identifying and connecting the central claim of the
text, supporting premises, possible objections, and
counter-objections to these objections.1

A variety of applications can profit from ac-
cess to the argumentative structure of text, includ-
ing the retrieval of relevant court decisions from
legal databases (Palau and Moens, 2011), auto-
matic document summarization systems (Teufel
and Moens, 2002), the analysis of scientific papers
in biomedical text mining (Teufel, 2010; Liakata

1A comprehensive overview of the research field is given
in (Peldszus and Stede, 2013).

et al., 2012), or essay scoring. Importantly, argu-
ment analysis can also be an extension of opinion
mining applications.

To make argumentation structures available for
these applications, their robust automatic recogni-
tion is required, a task that is very challenging:
argumentative strategies and styles vary across
text genres and languages; classifying arguments
might require domain knowledge; furthermore, ar-
gumentation can often rely on implicitly conveyed
messages.

The full-fledged task can be decomposed into
several subtasks:

• Segmentation: splitting the text into elemen-
tary discourse units (EDUs as used in gen-
eral kinds of discourse parsing, typically sen-
tences or clauses)

• Identification of argumentative discourse
units (ADUs): discarding argumentatively ir-
relevant EDUs, joining adjacent EDUs to
form larger ADUs

• ADU type classification: determining the
type of argumentative unit; different schemes
have been proposed, involving stance, evi-
dence types, rhetorical status, argumentative
function

• Relation identification: building a connected
tree- or graph-structure to represent argumen-
tative relations between the ADUs

• Relation type classification: determining the
type of argumentative relation (e.g. support-
ing versus attacking relations or more fine-
grained types)

In this paper, we address the last three subtasks:
Given a text segmented into relevant ADUs, iden-
tify the argumentation structure. We will work
with a bilingual corpus of short texts that have
been generated in a text production experiment.
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The next section describes related work. In sec-
tion 3, we present the dataset used in our experi-
ments. Section 4 gives a more detailed description
of the task. The baselines and the models are pre-
sented in section 5. We then report the result of
our experiments in section 6 and close with some
concluding remarks.

2 Related Work

In our discussion of related work, we focus on the
three subtasks addressed in this paper:

ADU type classification: One typical clas-
sification task concerns the properties of a seg-
ment in the argumentation structure: Burstein and
Marcu (2003) trained classifiers for identifying
thesis and conclusion statements in student es-
says, using additional automatic discourse parse
features and cue words, resulting in an average F-
score of 53% for thesis and 80% for conclusion
segments. For legal texts, Palau and Moens (2011)
demonstrated in their influential work how to clas-
sify the segment of a text into premises and con-
clusions, obtaining an F-score of 68% and 74% for
the two classes. More recently, Stab and Gurevych
(2014) classified segments in student essays into
the classes major claim (of the text), claim (of the
paragraph), premise and irrelevant. The macro av-
erage F-score for all classes is 73%, the F-score for
the claim of the paragraph 54% and for the major
claim 63%.

Besides structural segment-wise classification
tasks, there is also work on more semantic tasks:
The rhetorical status of a segment is classified in
the argumentative zoning approaches (Teufel and
Moens, 2002; Teufel and Kan, 2011; Liakata et al.,
2012), where certain coarse-grained patterns of ar-
gumentation in scholarly papers can be captured.
Park and Cardie (2014) focus on supporting seg-
ments and classify which type of evidence is pre-
sented in it. Finally, stance classification (Hasan
and Ng, 2013) might be of interest to identify pos-
sible objections, although it is typically applied on
full comments and not on single segments.

Relation identification: Much less prior work
can be found for the process of building argumen-
tation structures. Palau and Moens (2011) used a
hand-written context-free grammar to predict ar-
gumentation trees on legal documents, achieving
an accuracy of 60%. Only recently, data-driven
approaches have been applied. Lawrence et al.
(2014) construct tree structures on philosophical

texts using unsupervised methods based on topical
distance between the segments. The relations in
the tree are neither labeled not directed. Unfortu-
nately, the method was evaluated on only a few an-
notated items, which is why we cannot comment
on the results. Finally, Stab and Gurevych (2014)
present a supervised data-driven approach for re-
lation identification. They predict attachment for
support-graphs spanning over paragraphs of En-
glish essays and obtain a macro F1 score of 72%,
and an F1 score of 52% for positive attachment.
No decoding is used to optimize global predictions
per text.

Relation type classification: The only study
on explicitly classifying argumentative relations
we are aware of is (Feng and Hirst, 2011). They
classify pairs of premise and conclusion from
newswire text into a set of five frequently used
argumentation schemes in the sense of Walton et
al. (2008). In one-against-others classification, the
system yields best average accuracies of over 90%
for two schemes, while for the other three schemes
the results are between 63% and 70%.

To the best of our knowledge, no data-driven
model of argumentation structure has been pro-
posed yet that would optimize argumentation
structure globally for the complete input text, as
it is done in other discourse parsing tasks, e.g. in
(Muller et al., 2012).

3 Dataset

Texts: We use the arg-microtext corpus (Peldszus
and Stede, to appear), a freely available2 parallel
corpus of 112 short texts with 576 ADUs. The
texts are authentic discussions of controversial is-
sues. They were originally written in German
and have been professionally translated to English,
preserving the segmentation and if possible the us-
age of discourse markers. The texts have been col-
lected in a controlled text generation experiment,
with the result that all of them fulfill the follow-
ing criteria: (i) The length of each text is about 5
ADUs (henceforth: segments). (ii) One segment
explicitly states the central claim. (iii) Each seg-
ment is argumentatively relevant. (iv) At least one
objection to the central claim is considered.

Scheme: The argumentation structure of
every text has been annotated according to a
scheme (Peldszus and Stede, 2013) based on Free-
man’s theory of argumentation structures (Free-

2https://github.com/peldszus/arg-microtexts
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[e1] Of course there are a
number of programmes in public

broadcasting that are not
worth the licencing fee,

[e2] and others, such as
“Musikantenstadl” and soap
operas, are only interesting

to certain audiences.

1

[e3] Nevertheless, everybody
should contribute to the
funding of the public

broadcasters in equal measure,

2

[e4] for we need general and
independent media.

3

[e5] After all we want to get
our viewof the world neither
through the lens of the

government nor through that of
rich media entrepreneurs.

4

5

Figure 1: An example text and its reduced ar-
gumentation structure: Text segments, proponent
(round) and opponent (box) nodes, supporting
(arrow-head) and attacking (circle-head) relations.

man, 1991; Freeman, 2011), that has been proven
to yield reliable structures in annotation experi-
ments (Peldszus, 2014). The argumentation struc-
ture of a text is defined as a graph with the text seg-
ments as nodes. Each node is associated with one
argumentative role: the proponent who presents
and defends the central claim, or the opponent who
critically questions the proponent’s claims. Edges
between the nodes represent argumentative rela-
tions, and each edge is of one specific argumen-
tative function: support or attack. The scheme al-
lows to discriminate between “rebutting” attacks,
targeting another node and thereby challenging its
acceptability, and “undercutting” attacks, target-
ing an edge and thereby challenging the accept-
ability of the inference from the source to the tar-
get node. It can also represent linked support,
where multiple premises jointly support a claim.

Transformation: The annotated graph struc-
tures can be quite complex, especially when they
involve undercutting relations and linked support.
For the purpose of this study, we thus reduce the
graphs to a simpler tree-like representation. All re-
lations pointing to edges are rewritten to point to
the source node of the original target edge, which
enables the use of standard graph algorithms (like
MST). Also, this is a loss-less mapping, given that
every segment has only one outgoing arc (as gen-
erally done in argumentation models). Further-
more, the set of relation types is reduced to the
simple binary distinction between support and at-
tack. We think this is a reasonable simplification

that facilitates comparisons with slightly differ-
ent approaches/datasets (we are not aware of any
dataset that makes use of the full granularity pro-
posed in our scheme).

An example text from the corpus in its reduced
form is shown in Figure 1. Text boxes are EDUs,
each of which constitutes also an ADU. Proponent
ADUs are round nodes, opponent ADUs are box
nodes. Supporting relations have a normal arrow-
head, while attacking relations have a circle arrow-
head.

All statistics on the annotated argumentation
structures apply equally for the German and the
English version of the parallel corpus.

4 Task

Identifying the structure of argumentation accord-
ing to our scheme involves choosing one segment
as the central claim of the text, deciding how the
other segments are related to the central claim and
to each other, identifying the argumentative role of
each segment, and finally the argumentative func-
tion of each relation.

Our prior experiments on automating the recog-
nition of argumentation structure approached the
problem as a segment-wise classification task
(Peldszus, 2014). Formulating the task this way
was successful for the recognition of argumenta-
tive role and function of a segment. For the au-
tomation of the structure building however, the
segment-wise classification of attachment with
only a small context window around the target seg-
ment proved to be a very hard task. This is due to
the long-distance dependencies frequently found
in argumentation graphs. For example, 46% of
the relations marked in the corpus used for this
study involve non-adjacent segments. For longer
texts this number might increase further: Stab and
Gurevych (2014) report a rate of 63% of non-
adjacent relations in their corpus.

In this study we therefore frame the task of at-
tachment classification as a binary decision, where
the classifier, when given a pair of a source and a
target segment, chooses whether or not to estab-
lish a relation from the source to the target. Since
these relations can hold not only between adjacent
but between arbitrary segments of the text, all pos-
sible combinations of segments are required to be
tested. Consequently, the class distribution is very
skewed.

• attachment (at): Is there an argumentative
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connection between the source and the target
segment? In the corpus, a relation has been
annotated for 464 segment pairs, no relation
has been annotated for the combinatorially
remaining 2000 pairs of segments.

In this paper we first address only the task of at-
tachment classification, and then the prediction of
the full graph, involving all other levels:

• central claim (cc): Is the current segment the
central claim of the text? In our data 112 of
the 576 segments are central claims.

• role (ro): Does the current segment present a
claim of the proponent or the opponent? In
our data 451 of the 576 segments are pro-
ponent segments and 125 are opponent seg-
ments.

• function (fu): Has the current segment a sup-
porting or an attacking function? In our data,
290 segments are supports, 174 are attacks
and 112 are the central claim and thus have
no own function.

5 Models

We compare two heuristic baseline models and
different data-driven models that we developed,
each of them trained and evaluated separately on
both language versions of the corpus. All models
are evaluated on the basis of 10 iterations of 5x3-
fold nested cross validation (CV). The outer 5-fold
CV is for evaluation only, i.e. to ensure that the
model is trained only on training data and tested
only on test data. If a model requires hyperpa-
rameters to be tuned or multiple passes, then this
is achieved via one (or multiple) inner 3-fold CV
over the training data only. The folding is strati-
fied, randomly distributing the texts of the corpus
while aiming to reproduce the overall label distri-
bution in both training and test set.

5.1 Baseline: attach to first

In the English-speaking school of essay writing
and debating, there is the tendency to state the cen-
tral claim of a text or a paragraph in the very first
sentence, followed by supporting arguments. It is
therefore a reasonable baseline to assume that all
segments attach to the first segment. In our cor-
pus, the first segment is the central claim in 50 of
the 112 texts (44.6%).

This baseline (BL-first) will not be able to cap-
ture serial argumentation, where one more general
argument is supported or attacked by a more spe-
cific one. However, it will cover convergent argu-
mentation, where separate arguments are put for-
ward in favor of the central claim (given that it is
expressed in the first segment). It will always pro-
duce flat trees. In our corpus, 176 of the 464 rela-
tions (37.9%) attach to the first segment.

5.2 Baseline: attach to preceding
A typically very strong baseline in discourse pars-
ing is attaching to the immediately preceding seg-
ment (Muller et al., 2012). Possibly, this holds
more for corpora with relations often or always
being adjacent, as in rhetorical structure trees.
Since argumentation structures often exhibit non-
adjacent relations (see above), this heuristic might
be easier to beat in our scenario.

This baseline (BL-preced.) will always pro-
duce chain trees and thus cover serial argumen-
tation, but not convergent argumentation. In our
corpus, 210 of all 464 relations (45.3%) attach to
the preceding segment.

5.3 Learned attachment without decoding
We train a linear log-loss model (simple) us-
ing stochastic gradient descent (SGD) learning,
with elastic net regularization, the learning rate
set to optimal decrease and class weight adjusted
according to class distribution (Pedregosa et al.,
2011). The following hyper parameters are tuned
in the inner CV: the regularization parameter al-
pha, the elastic net mixing parameter and the num-
ber of iterations. We optimize macro averaged F1-
score.

For each text segment, we extract binary fea-
tures for lemma, pos-tags, lemma- and pos-tag-
based dependency-parse triples and the main verb
morphology (Bohnet, 2010), and discourse con-
nectives (Stede, 2002), furthermore simple statis-
tics like relative segment position, segment length
and punctuation count. For each pair of text seg-
ments, we extract relative distance between the
segments and their linear order (is the source be-
fore or after the target). The feature vector for
each pair then contains both the pair features and
the segment features for source and target segment
and their adjacent segments.3

3We experimented with several features, some of which
were dismissed from the final evaluation runs due to lacking
impact: sentiment values and the presence of negation for
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5.4 Learned attachment with MST decoding

The simple model just described might be able
to learn which segment pairs actually attach, i.e.,
correspond to some argumentative relation in the
corpus. However it is not guaranteed to yield
predictions that can be combined to a tree struc-
ture again. A more appropriate model would en-
force global constraints on its predictions. In the
simple+MST model, this is achieved by a mini-
mum spanning tree (MST) decoding, which has
first been applied for syntactic dependency parsing
(McDonald et al., 2005a; McDonald et al., 2005b)
and later for discourse parsing (Baldridge et al.,
2007; Muller et al., 2012). First, we build a fully-
connected directed graph, with one node for each
text segment. The weight of each edge is the at-
tachment probability predicted by the learned clas-
sifier for the corresponding pair of source and tar-
get segment. We then apply the Chu-Liu-Edmonds
algorithm (Chu and Liu, 1965; Edmonds, 1967)
to determine the minimum spanning tree, i.e., the
subgraph connecting all nodes with minimal total
edge cost (in our case highest total edge probabil-
ity). This resulting tree then represents the best
global attachment structure for a text given the
predicted probabilities.

5.5 Joint prediction with MST decoding

All models presented in the previous subsections
have in common that they do not rely on other fea-
tures of the argumentation graph. However, it is
fair to assume that knowledge about the argumen-
tative role and function of a segment or its like-
liness to be the central claim might improve the
attachment classification. Consequently, our next
model considers not only the predicted probability
of attachment for a segment pair, but also the pre-
dicted probabilities of argumentative role, func-
tion and of being the central claim for each seg-
ment. The predictions of all levels are combined
in one evidence graph.

Additional segment-wise base classifiers: We
train base classifiers for the role, function and cen-
tral claim level using the same learning regime as
described in Section 5.3. Contrary to the attach-
ment classification, the items are not segment pairs
but single segments. We thus extract all segment-
based features as described above for the target
segment and its adjacent segments.

segments, and distance measures between pairs of segments
in terms of word-overlap, td-idf and LDA distributions.

Combining segment and segment-pair pre-
dictions: Our goal in this model is to combine
the predicted probabilities of all levels in one edge
score, so that the MST decoding can be applied as
before. Figure 2 depicts the situation before and
after the combination, first with separate predic-
tion for segments and segment pairs and then with
the combined edge scores.

The evidence graph is constructed as follows:
First, we build a fully connected multigraph over
all segments with as many edges per segment-pair
as there are edge types. In our scenario there are
two edge types, supporting and attacking edges.
Then we translate the segment-wise predictions
into level-specific edge scores.

The edge-score for the central claim level cci,j

is equal to the probability of the edge’s source not
being the central claim, which is capturing the in-
tuition that central claims are unlikely to have out-
going edges:

cci,j = p(cci = no) (1)

The edge-score for the argumentative function
level fui,j is equal to the probability of the source
being the corresponding segment for the edge
type:

fui,j =

{
p(fui = sup) for sup. edges
p(fui = att) for att. edges (2)

The edge-score for the argumentative role level
roi,j is also determined by the edge type. Attack-
ing edges involve a role switch (proponent or op-
ponent would not attack their own claims), while
supporting edges preserve the role (proponent or
opponent will only support their own claims):

roi,j =


p(roi = pro)× p(roj = pro)+
p(roi = opp)× p(roj = opp) for sup. edges

p(roi = pro)× p(roj = opp)+
p(roi = opp)× p(roj = pro) for att. edges

(3)

Finally, of course the edge-score for the attach-
ment level ati,j is equal to the probability of at-
tachment between the segment pair:

ati,j = p(ati,j = yes) (4)

The combined score of an edge wi,j is then de-
fined as the weighted sum of the level-specific
edge score:

wi,j =
φ1roi,j + φ2fui,j + φ3cci,j + φ4ati,j∑

φn

(5)
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Figure 2: An example evidence graph before (left) and after (right) the predicted probabilities of the
different levels have been combined in a single edge score.

In our implementation, the combined evidence
graphs can be constructed without a weighting,
and then be instantiated with a specific weighting
to yield the combined edge scores wi,j .

Procedure: As before, we first tune the hyper-
parameters in the inner CV, train the model on the
whole training data and predict probabilities on all
items of the test set. Also, we predict all items in
the training data “as unseen” in a second inner CV
using the best hyperparameters. This procedure is
executed for every level. Using the predictions of
all four levels, we then build the evidence graphs
for training and test set.

Finding the right weighting: We evaluate two
versions of the evidence graph model. The first
version (EG equal) gives equal weight to each
level-specific edge score. The second version (EG
best) optimizes the weighting of the base classi-
fiers with a simple evolutionary search on all evi-
dence graphs of the training set, i.e. it searches for
a weighting that maximizes the average level eval-
uation score of the decoded argumentation struc-
tures in the training set. Finally, all evidence
graphs of the test set are instantiated with the se-
lected weighting (the equal one or the optimized
one) and evaluated.

5.6 Comparison: MST parser
Finally, we compare our models to the well-known
mstparser4, which was also used in the discourse
parsing experiments of Baldridge et al. (2007).
The mstparser applies 1-best MIRA structured
learning, a learning regime that we expect to be
superior over the simple training in the previous
models. In all experiments in this paper, we use
10 iterations for training, the non-projective 1-best
MST decoding, and no second order features. The

4http://sourceforge.net/projects/mstparser/

base mstparser model (MP) evaluated here uses
the same features as above, as well as its own
features extracted from the dependency structure.
Second, we evaluate a pre-classification scenario
(MP+p), where the predictions of the base classi-
fiers trained in the above models for central claim,
role and function are added as additional features.
We expect this to improve the central claim iden-
tification as well as the edge labeling.

For the full task involving all levels, we com-
bine the mstparser with an external edge labeler,
as the internal edge labeler is reported to be weak.
In this setting (MP+r), we replace the edge la-
bels predicted by the mstparser with the pre-
dictions of the base classifier for argumentative
function. Furthermore, the combination of pre-
classification, mstparser and external relation la-
beler (MP+p+r) is evaluated. Finally, we evaluate
a scenario (MPε+p+r) where the mstparser has ac-
cess only to its own features and to those of the
pre-classification, but not to the features described
in Section 5.3, and the external relation labeller
is used. In this scenario, the mstparser exclusively
serves as a meta-model on the base classifier’s pre-
dictions.

6 Results

All results are reported as average and standard
deviation over the 50 folds resulting from 10 iter-
ations of (the outer) 5-fold cross validation. We
use the following metrics: macro averaged F1,
F1 for positive attachment, and Cohen’s Kappa κ.
For significance testing, we apply the Wilcoxon
signed-rank test on the macro averaged F1 scores
and assume a significance level of α=0.01.

6.1 Attachment task

Table 1 shows the results in the attachment task.
The rule-based baseline scores are equal for both
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BL-first BL-preced. simple simple+MST EG equal EG best MP MP+p

F1 macro .618±.041 .662±.025 .679±.025 .688±.032 .712±.026 .710±.028 .724±.030 .728±.033
attach F1 .380±.067 .452±.039 .504±.038 .494±.053 .533±.042 .530±.044 .553±.048 .559±.053
κ .236±.081 .325±.050 .365±.048 .377±.064 .424±.052 .421±.055 .449±.060 .456±.066

trees 100% 100% 15.4% 100% 100% 100% 100% 100%

BL-first BL-preced. simple simple+MST EG equal EG best MP MP+p

F1 macro .618±.041 .662±.025 .663±.030 .674±.036 .692±.034 .693±.031 .707±.035 .720±.034
attach F1 .380±.067 .452±.039 .478±.049 .470±.058 .501±.056 .502±.052 .524±.056 .546±.056
κ .236±.081 .325±.050 .333±.059 .347±.071 .384±.068 .386±.063 .414±.070 .440±.069

trees 100% 100% 11.6% 100% 100% 100% 100% 100%

Table 1: Results for the attachment task: for German (above) and English (below), best values high-
lighted.

German English

total graphs 1120 100.0% 1120 100.0%

rooted 1091 97.4% 1088 97.1%
cycle free 1059 94.6% 995 88.8%
full span 908 81.1% 864 77.1%
out degree 298 26.6% 283 25.3%

trees 173 15.4% 120 10.7%

Table 2: Number and percentage of valid trees for
the “simple” attachment model

languages, since they rely only on the annotated
structure of the parallel corpus. Here, attach-to-
first is the lower bound, attach-to-preceding is a
more competitive baseline, as we had hypothe-
sized in section 5.2.

The learned classifier (simple) beats both base-
lines in both languages, although the improvement
is much smaller for English than for German. In
general, the classifier lacks precision compared to
recall: It predicts too many edges. As a result,
the graph constructed from the predicted edges for
one text very often does not form a tree. In Table 2,
we give a summary of how often tree constraints
are fulfilled, showing that without decoding, valid
trees can only be predicted for 15.4% of the texts
in German and for 10.7% of the texts in English.
The most frequently violated constraint is “out de-
gree”, stating that every node in the graph should
have at most one outgoing edge. Note that all other
models, the baselines as well as the MST decoding
models, are guaranteed to predict tree structures.

The simple+MST model yields slightly lower
F1-scores for positive attachment than without de-
coding, trading off a loss of 10 points in recall of
the over-optimistic base classifier against a gain
of 5 in precision. However, the output graphs are

constrained to be trees now, which is rewarded by
a slight increase in the summarizing metrics macro
F1 and κ.

The evidence graph models (EG equal & EG
best) clearly outperform the simple and sim-
ple+MST model, indicating that the attachment
classification can benefit from jointly predicting
the four different levels. Note, that the EG model
with equal weighting scores slightly better than the
one with optimized weighting for German but not
for English. However, this difference is not signif-
icant (p>0.5) for both languages, which indicates
that the search for an optimal weighting is not nec-
essary for the attachment task.

The overall best result is achieved by the mst-
parser model. We attribute this to the superior
structured learning regime. The improvement of
MP over EP equal and best is significant in both
languages (p<0.008). Using pre-classification fur-
ther improves the results, although difference is
neither significant for German (p=0.4) nor for En-
glish (p=0.016).

6.2 Full task

Until now, we only focused on the attachment task.
In this subsection we will present results on the
impact of joint prediction for all levels.

The results in Table 3 show significant improve-
ments of the EG models over the base-classifiers
on the central claim, the function and the attach-
ment levels (p<0.0001). This demonstrates the
positive impact of jointly predicting all levels. The
EG models achieve the best scores in central claim
identification and function classification, and the
second best result in role identification. The dif-
ferences between EG equal and EG best are not
significant on any level, which again indicates that
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simple EG equal EG best MP MP+p MP+r MP+p+r MPε+p+r

cc maF1 .849±.035 .879±.042 .890±.037 .825±.055 .855±.055 .825±.055 .855±.055 .854±.053
κ .698±.071 .759±.085 .780±.073 .650±.111 .710±.110 .650±.111 .710±.110 .707±.105

ro maF1 .755±.049 .737±.052 .734±.046 .464±.042 .477±.047 .656±.054 .669±.062 .664±.053
κ .511±.097 .477±.103 .472±.092 .014±.049 .022±.063 .315±.106 .340±.122 .330±.105

fu maF1 .703±.046 .735±.045 .736±.043 .499±.054 .527±.047 .698±.054 .723±.052 .723±.050
κ .528±.068 .573±.066 .570±.063 .293±.056 .326±.056 .522±.076 .557±.075 .560±.073

at maF1 .679±.025 .712±.026 .710±.028 .724±.030 .728±.033 .724±.030 .728±.033 .724±.029
κ .365±.048 .424±.052 .421±.055 .449±.060 .456±.066 .449±.060 .456±.066 .448±.059

simple EG equal EG best MP MP+p MP+r MP+p+r MPε+p+r

cc maF1 .817±.045 .860±.051 .869±.053 .780±.063 .831±.059 .780±.063 .831±.059 .823±.063
κ .634±.090 .720±.103 .737±.107 .559±.126 .661±.118 .559±.126 .661±.118 .647±.122

ro maF1 .750±.045 .721±.051 .720±.047 .482±.053 .475±.047 .620±.064 .638±.057 .641±.062
κ .502±.090 .445±.098 .442±.092 .024±.068 .015±.060 .243±.126 .280±.114 .285±.122

fu maF1 .671±.049 .707±.048 .710±.050 .489±.062 .514±.059 .642±.057 .681±.057 .677±.059
κ .475±.074 .529±.070 .530±.072 .254±.058 .296±.063 .440±.081 .491±.083 .486±.083

at maF1 .663±.030 .692±.034 .693±.031 .707±.035 .720±.034 .707±.035 .720±.034 .713±.033
κ .333±.095 .384±.068 .386±.063 .414±.070 .440±.069 .414±.070 .440±.069 .427±.066

Table 3: Results for the full task: for German (above) and English (below), best values highlighted.

we can dispense with the extra step of optimizing
the weighting and use the simple equal weighting.
These result are consistent across both languages.

The pure labeled mstparser model (MP) per-
forms worse than the base classifiers on all lev-
els except for the attachment task. Adding pre-
classification yields significant improvements on
all levels but role identification. Using the ex-
ternal relation labeler drastically improves func-
tion classification and indirectly also role identifi-
cation. The combined model (MP+p+r) yields best
results for all mstparser models, but is still sig-
nificantly outperformed by EG equal in all tasks
except attachment classification. There, the mst-
parser models achieve best results, the improve-
ment of MP+p+r over EG equal is significant for
English (p<0.0001) and for German (p=0.001).
Interestingly, the meta-model (MPε+p+r) which
has access to its own features and to those of the
pre-classification, but not to the features described
in Section 5.3, performs nearly as good as or equal
to the combined model (MP+p+r).

The only level not benefiting from any MST
model in comparison with the base classifier is the
role classification: In the final MST, the role of
each segment is only implicitly represented, and
can be determined by following the series of the
role-switches of each argumentative function from
the segment to the root. The loss of accuracy for
predicting the argumentative role is much smaller

for German than for English, probably due to the
better attachment classification in the first place.

Finally, note that the EG best model gives the
highest total score when summed over all levels,
followed by EG equal and then MP+p+r.

Projecting further improvements: We have
shown that joint prediction of all levels in the ev-
idence graph models helps to improve the clas-
sification on single levels. To measure exactly
how much a level contributes to the predictions of
other levels, we simulate better base classifiers and
study their impact. To achieve this, we artificially
improved the classification of one target level by
overwriting a percentage of its predictions with
ground truth. The overwritten predictions where
drawn randomly, corresponding to the label dis-
tribution of the target level. E.g. for a 20% im-
provement on the argumentative function level, the
predictions of 20% of the true “attack”-items were
set to attack and the predictions of 20% of the true
“support”-items were set to support, irrespective
of whether the classifier already chose the correct
label.

The results of the simulations are presented in
Figure 3 for English only, due to space constraints.
The results for German exhibit the same trends.
The figure plots the κ-score on the y-axis against
the percentage of improvement on the x-axis. Ar-
tificially improved levels are drawn as a dashed
line. As the first plot shows, function classifica-
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Figure 3: Simulations of the effect of better base classifiers in the EG equal model for English: dashed
levels artificially improved, x = number of predictions overwritten with ground truth; y = average κ score
in 10 iterations of 5fold CV.

tion is greatly improved by a better role classifica-
tion (due to the logical connection between them),
whereas the other levels are unaffected. In con-
trast, all levels would benefit from a better function
classification, most importantly even the attach-
ment classification. Potential improvements in the
central claim identification mostly affect function
classification (as these classification tasks partly
overlap: central claims will not be assigned a func-
tion they cannot have). Finally, a combined im-
provement on the logically coupled task of role
and function identification, would even more help
the attachment classification. It might thus be use-
ful to work on a better joint role and function clas-
sifier in near future.

Evidence combination: As pointed out by one
reviewer, combining the evidence in an edge score
as a weighted sum, see (5), instead of a product of
probabilities might be inadequate and could result
in a model that optimizes the highest scored but
not the most probable structure. We compared the
EG equal against an EG model with a product of
probability. The model scores are nearly identical
and do not show a significant difference.

7 Summary and Outlook

We introduced a new approach to argumenta-
tion mining that we applied to a parallel Ger-
man/English corpus of 112 short texts. For the
purposes of automatic mining, the original more
fine-grained annotation in the corpus was reduced
to a slightly simplified scheme consisting of sup-
port and attack relations among argumentative dis-
course units. We did not address the segmenta-
tion step here but focused on structure prediction,
which we broke into a number of subtasks. Our

new evidence graph model jointly predicts differ-
ent aspects of the structure by combining the dif-
ferent subtask predictions in the edge weights of
an evidence graph; we then apply a standard MST
decoding algorithm. This model not only out-
performs two reasonable baselines and two sim-
ple models for the difficult subtask of attach-
ment/relation identification, but also improves the
results for central claim identification and relation
classification, and it compares favorably to a 3-
pass mstparser pipeline.

To the best of our knowledge, this is the first
data-driven model of argumentation structure that
optimizes argumentation structure globally for the
complete sequence of input segments. Further-
more, it is the first model jointly tackling segment
type classification, relation identification and rela-
tion type classification.

Although a direct comparison with results from
related work on other corpora is not possible, we
can draw indirect comparisons. The first learned
model without decoding (simple) is similar to the
one presented by Stab and Gurevych (2014). Since
it is outperformed by our joint MST decoding
model on our data, we assume similar gains could
be accomplished on their student essay dataset.

Our next step is to apply the method to other
corpora and to more complex text, where the iden-
tification of non-participating segments (which are
irrelevant for the argumentation) needs to be ac-
counted for. Furthermore, we plan to investigate
structured models that not only jointly predict but
jointly learn the different aspects of the argumen-
tation graph.
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