Deep Convolutional Neural Network Textual Features and Multiple Kernel Learning for Utterance-level Multimodal Sentiment Analysis

Soujanya Poria, Erik Cambria, Alexander Gelbukh


Anthology ID:
D15-1303
Volume:
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing
Month:
September
Year:
2015
Address:
Lisbon, Portugal
Editors:
Lluís Màrquez, Chris Callison-Burch, Jian Su
Venue:
EMNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
2539–2544
Language:
URL:
https://aclanthology.org/D15-1303/
DOI:
10.18653/v1/D15-1303
Bibkey:
Cite (ACL):
Soujanya Poria, Erik Cambria, and Alexander Gelbukh. 2015. Deep Convolutional Neural Network Textual Features and Multiple Kernel Learning for Utterance-level Multimodal Sentiment Analysis. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2539–2544, Lisbon, Portugal. Association for Computational Linguistics.
Cite (Informal):
Deep Convolutional Neural Network Textual Features and Multiple Kernel Learning for Utterance-level Multimodal Sentiment Analysis (Poria et al., EMNLP 2015)
Copy Citation:
PDF:
https://aclanthology.org/D15-1303.pdf