Lifelong-RL: Lifelong Relaxation Labeling for Separating Entities and Aspects in Opinion Targets

Lei Shu, Bing Liu, Hu Xu, Annice Kim


Anthology ID:
D16-1022
Volume:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing
Month:
November
Year:
2016
Address:
Austin, Texas
Editors:
Jian Su, Kevin Duh, Xavier Carreras
Venue:
EMNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
225–235
Language:
URL:
https://aclanthology.org/D16-1022/
DOI:
10.18653/v1/D16-1022
Bibkey:
Cite (ACL):
Lei Shu, Bing Liu, Hu Xu, and Annice Kim. 2016. Lifelong-RL: Lifelong Relaxation Labeling for Separating Entities and Aspects in Opinion Targets. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 225–235, Austin, Texas. Association for Computational Linguistics.
Cite (Informal):
Lifelong-RL: Lifelong Relaxation Labeling for Separating Entities and Aspects in Opinion Targets (Shu et al., EMNLP 2016)
Copy Citation:
PDF:
https://aclanthology.org/D16-1022.pdf
Video:
 https://aclanthology.org/D16-1022.mp4