An Unsupervised Probability Model for Speech-to-Translation Alignment of Low-Resource Languages

Antonios Anastasopoulos, David Chiang, Long Duong


Anthology ID:
D16-1133
Volume:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing
Month:
November
Year:
2016
Address:
Austin, Texas
Editors:
Jian Su, Kevin Duh, Xavier Carreras
Venue:
EMNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
1255–1263
Language:
URL:
https://aclanthology.org/D16-1133/
DOI:
10.18653/v1/D16-1133
Bibkey:
Cite (ACL):
Antonios Anastasopoulos, David Chiang, and Long Duong. 2016. An Unsupervised Probability Model for Speech-to-Translation Alignment of Low-Resource Languages. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1255–1263, Austin, Texas. Association for Computational Linguistics.
Cite (Informal):
An Unsupervised Probability Model for Speech-to-Translation Alignment of Low-Resource Languages (Anastasopoulos et al., EMNLP 2016)
Copy Citation:
PDF:
https://aclanthology.org/D16-1133.pdf
Video:
 https://aclanthology.org/D16-1133.mp4