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Abstract

Language documentation begins by gather-
ing speech. Manual or automatic transcrip-
tion at the word level is typically not possi-
ble because of the absence of an orthography
or prior lexicon, and though manual phone-
mic transcription is possible, it is prohibitively
slow. On the other hand, translations of the
minority language into a major language are
more easily acquired. We propose a method
to harness such translations to improve auto-
matic phoneme recognition. The method as-
sumes no prior lexicon or translation model,
instead learning them from phoneme lattices
and translations of the speech being tran-
scribed. Experiments demonstrate phoneme
error rate improvements against two baselines
and the model’s ability to learn useful bilin-
gual lexical entries.

1 Introduction

Most of the world’s languages are dying out and
have little recorded data or linguistic documentation
(Austin and Sallabank, 2011). It is important to ad-
equately document languages while they are alive
so that they may be investigated in the future. Lan-
guage documentation traditionally involves one-on-
one elicitation of speech from native speakers in or-
der to produce lexicons and grammars that describe
the language. However, this does not scale: lin-
guists must first transcribe the speech phonemically
as most of these languages have no standardized
orthography. This is a critical bottleneck since it
takes a trained linguist about 1 hour to transcribe the
phonemes of 1 minute of speech (Do et al., 2014).

Smartphone apps for rapid collection of bilin-
gual data have been increasingly investigated (De
Vries et al., 2011; De Vries et al., 2014; Reiman,
2010; Bird et al., 2014; Blachon et al., 2016). It is
common for these apps to collect speech segments
paired with spoken translations in another language,
making spoken translations quicker to obtain than
phonemic transcriptions.

We present a method to improve automatic
phoneme transcription by harnessing such bilingual
data to learn a lexicon and translation model directly
from source phoneme lattices and their written tar-
get translations, assuming that the target side is a
major language that can be efficiently transcribed.1

A Bayesian non-parametric model expressed with a
weighted finite-state transducer (WFST) framework
represents the joint distribution of source acoustic
features, phonemes and latent source words given
the target words. Sampling of alignments is used
to learn source words and their target translations,
which are then used to improve transcription of the
source audio they were learnt from. Importantly,
the model assumes no prior lexicon or translation
model.

This method builds on work on phoneme transla-
tion modeling (Besacier et al., 2006; Stüker et al.,
2009; Stahlberg et al., 2012; Stahlberg et al., 2014;
Adams et al., 2015; Duong et al., 2016), speech
translation (Casacuberta et al., 2004; Matusov et
al., 2005), computer-aided translation, (Brown et al.,
1994; Vidal et al., 2006; Khadivi and Ney, 2008;
Reddy and Rose, 2010; Pelemans et al., 2015),
translation modeling from automatically transcribed

1Code is available at https://github.com/oadams/latticetm.
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speech (Paulik and Waibel, 2013), word segmenta-
tion and translation modeling (Chang et al., 2008;
Dyer, 2009; Nguyen et al., 2010; Chen and Xu,
2015), Bayesian word alignment (Mermer et al.,
2013; Zezhong et al., 2013) and language model
learning from lattices (Neubig et al., 2012). While
we previously explored learning a translation model
from word lattices (Adams et al., 2016), in this paper
we extend the model to perform unsupervised word
segmentation over phoneme lattices in order to im-
prove phoneme recognition.

Experiments demonstrate that our method signifi-
cantly reduces the phoneme error rate (PER) of tran-
scriptions compared with a baseline recogniser and
a similar model that harnesses only monolingual in-
formation, by up to 17% and 5% respectively. We
also find that the model learns meaningful bilingual
lexical items.

2 Model description

Our model extends the standard automatic speech
recognition (ASR) problem by seeking the best
phoneme transcription φ̂ of an utterance in a joint
probability distribution that incorporates acoustic
features x, phonemes φ, latent source words f and
observed target transcriptions e:

φ̂ = argmax
φ,f

P (x|φ)P (φ|f)P (f |e) , (1)

assuming a Markov chain of conditional indepen-
dence relationships (bold symbols denote utter-
ances as opposed to tokens). Deviating from stan-
dard ASR, we replace language model probabilities
with those of a translation model, and search for
phonemes instead of words. Also, no lexicon or
translation model are given in training.

2.1 Expression of the distribution using
finite-state transducers

We use a WFST framework to express the factors of
(1) since it offers computational tractability and sim-
ple inference in a clear, modular framework. Fig-
ure 1 uses a toy German–English error resolution
example to illustrate the components of the frame-
work: a phoneme lattice representing phoneme un-
certainty according to P (x|φ); a lexicon that trans-
duces phoneme substrings φs of φ to source tokens
f according to P (φs|f); and a lexical translation

model representing P (f |e) for each e in the written
translation. The composition of these components
is also shown at the bottom of Figure 1, illustrating
how would-be transcription errors can be resolved.
This framework is reminiscent of the WFST frame-
work used by Neubig et al. (2012) for lexicon and
language model learning from monolingual data.

2.2 Learning the lexicon and translation model
Because we do not have knowledge of the source
language, we must learn the lexicon and translation
model from the phoneme lattices and their written
translation. We model lexical translation probabil-
ities using a Dirichlet process. Let A be both the
transcription of each source utterance f and its word
alignments to the translation e that generated them.
The conditional posterior can be expressed as:

P (f |e;A) = cA(f, e) + αP0(f)

cA(e) + α
, (2)

where cA(f, e) is a count of how many times f has
aligned to e in A and cA(e) is a count of how many
times e has been aligned to; P0 is a base distribution
that influences how phonemes are clustered; and α
determines the emphasis on the base distribution.

In order to express the Dirichlet process using the
WFST components, we take the union of the lexi-
con with a spelling model base distribution that con-
sumes phonemes φi . . . φj and produces a special
〈unk〉 token with probability P0(φi . . . φj). This
〈unk〉 token is consumed by a designated arc in the
translation model WFST with probability α

cA(e)+α ,

yielding a composed probability of αP0(f)
cA(e)+α . Other

arcs in the translation model express the probability
cA(f,e)
cA(e)+α of entries already in the lexicon. The sum
of these two probabilities equates to (2).

As for the spelling model P0, we consider three
distributions and implement WFSTs to represent
them: a geometric distribution, Geometric(γ), a
Poisson distribution, Poisson(λ),2 and a ‘shifted’ ge-
ometric distribution, Shifted(α, γ). The shifted ge-
ometric distribution mitigates a shortcoming of the
geometric distribution whereby words of length 1
have the highest probability. It does so by having

2While the geometric distribution can be expressed recur-
sively, we cap the number of states in the Poisson WFST to
100.
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Figure 1: Top left to right: the phoneme lattice, the lexicon, and the translation model. Bottom: the resulting
composed WFST. Given an English translation ‘yard’, the most likely transcription is corrected to [ho:f]
(‘Hof’) in the composed WFST, while in the original phoneme lattice it is [haUs] (‘Haus’). Solid edges
represent most likely paths.

another parameter α that specifies the probability of
a word of length 1, with the remaining probability
mass distributed geometrically. All phonemes types
are treated the same in these distributions, with uni-
form probability.

2.3 Inference

In order to determine the translation model param-
eters as described above, we require the alignments
A. We sample these proportionally to their probabil-
ity given the data and our prior, in effect integrating
over all parameter configurations T :

P (A|X ;α, P0) =

∫

T
P (A|X , T )P (T ;α, P0)dT ,

(3)
where X is our dataset of source phoneme lattices
paired with target sentences.

This is achieved using blocked Gibbs sam-
pling, with each utterance constituting one
block. To sample from WFSTs, we use forward-
filtering/backward-sampling (Scott, 2002; Neubig
et al., 2012), creating forward probabilities using
the forward algorithm for hidden Markov models
before backward-sampling edges proportionally to
the product of the forward probability and the edge
weight.3

3No Metropolis-Hastings rejection step was used.

3 Experimental evaluation

We evaluate the lexicon and translation model by
their ability to improve phoneme recognition, mea-
suring phoneme error rate (PER).

3.1 Experimental setup

We used less than 10 hours of English–Japanese data
from the BTEC corpus (Takezawa et al., 2002), com-
prised of spoken utterances paired with textual trans-
lations. This allows us to assess the approach as-
suming quality acoustic models. We used acous-
tic models similar to Heck et al. (2015) to obtain
source phoneme lattices. Gold phoneme transcrip-
tions were obtained by transforming the text with
pronunciation lexicons and, in the Japanese case,
first segmenting the text into tokens using KyTea
(Neubig et al., 2011).

We run experiments in both directions: English–
Japanese and Japanese–English (en–ja and ja–en),
while comparing against three settings: the ASR 1-
best path uninformed by the model (ASR); a mono-
lingual version of our model that is identical except
without conditioning on the target side (Mono); and
the model applied using the source language sen-
tence as the target (Oracle).

We tuned on the first 1,000 utterences (about 1
hour) of speech and trained on up to 9 hours of the
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English (en) Japanese (ja)
Mono –ja Oracle Mono –en Oracle

ASR 22.1 24.3
Vague 17.7 18.5 17.2 21.5 20.8 21.6
Shifted 17.4 16.9 16.6 21.2 20.1 20.2
Poisson 17.3 17.2 16.8 21.3 20.1 20.8

Table 1: Phoneme error rates (percent) when train-
ing on 9 hours of speech, averaged over 4 runs.
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Figure 2: Japanese phoneme error rates using the
shifted geometric prior when training data is scaled
up from 1–9 hours, averaged over 3 runs.

remaining data.4 Only the oracle setup was used
for tuning, with Geometric(0.01) (taking the form of
a vague prior), Shifted(10−5, 0.25) and Poisson(7)
performing best.

3.2 Results and Discussion

Table 1 shows en–ja and ja–en results for all meth-
ods with the full training data. Figure 2 shows im-
provements of ja–en over both the ASR baseline and
the Mono method as the training data increases, with
translation modeling gaining an increasing advan-
tage with more training data.

Notably, English recognition gains less from us-
ing Japanese as the target side (en–ja) than the
other way around, while the ‘oracle’ approach for
Japanese recognition, which also uses Japanese as
the target, underperforms ja–en. These observations
suggest that using the Japanese target is less help-
ful, likely explained by the fine-grained morpholog-
ical segmentation we used, making it harder for the
model to relate source phonemes to target tokens.

The vague geometric prior significantly underper-
forms the other priors. In the en–ja/vague case, the

4A 1 hour subset was used for PER evaluation.

model actually underperforms its monolingual coun-
terpart. The vague prior biases slightly towards fine-
grained English source segmentation, with words of
length 1 most common. In this case, fine-grained
Japanese is also used as the target which results
in most lexical entries arising from uninformative
alignments between single English phonemes and
Japanese syllables, such as [t]⇔す. For similar rea-
sons, the shifted geometric prior gains an advantage
over Poisson, likely because of its ability to even fur-
ther penalize single-phoneme lexical items, which
regularly end up in all lexicons anyway due to their
combinatorical advantage when sampling.

While many bilingual lexical entries are correct,
such as [w2n]⇔一 (‘one’), most are not. Some
have segmentation errors [li:z]⇔くださ (‘please’);
some are correctly segmented but misaligned to
commonly co-occurring words [w2t]⇔時 (‘what’
aligned to ‘time’); others do not constitute indi-
vidual words, but morphemes aligned to common
Japanese syllables [i:N]⇔く (‘-ing’); others still
align multi-word units correctly [haUm2tS]⇔いく
ら (‘how much’). Note though that entries such as
those listed above capture information that may nev-
ertheless help to reduce phoneme transcription er-
rors.

4 Conclusion and Future Work

We have demonstrated that a translation model and
lexicon can be learnt directly from phoneme lattices
in order to improve phoneme transcription of those
very lattices.

One of the appealing aspects of this modular
framework is that there is much room for exten-
sion and improvement. For example, by using adap-
tor grammars to encourage syllable segmentation
(Johnson, 2008), or incorporating language model
probabilities in addition to our translation model
probabilities (Neubig et al., 2012).

We assume a good acoustic model with phoneme
error rates between 20 and 25%. In a language doc-
umentation scenario, acoustic models for the low-
resource source language won’t exist. Future work
should use a universal phoneme recognizer or acous-
tic model of a similar language, thus making a step
towards true generalizability.
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