@inproceedings{shi-etal-2017-fast,
title = "Fast(er) Exact Decoding and Global Training for Transition-Based Dependency Parsing via a Minimal Feature Set",
author = "Shi, Tianze and
Huang, Liang and
Lee, Lillian",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1002",
doi = "10.18653/v1/D17-1002",
pages = "12--23",
abstract = "We first present a minimal feature set for transition-based dependency parsing, continuing a recent trend started by Kiperwasser and Goldberg (2016a) and Cross and Huang (2016a) of using bi-directional LSTM features. We plug our minimal feature set into the dynamic-programming framework of Huang and Sagae (2010) and Kuhlmann et al. (2011) to produce the first implementation of worst-case $O(n^3)$ exact decoders for arc-hybrid and arc-eager transition systems. With our minimal features, we also present $O(n^3)$ global training methods. Finally, using ensembles including our new parsers, we achieve the best unlabeled attachment score reported (to our knowledge) on the Chinese Treebank and the {``}second-best-in-class{''} result on the English Penn Treebank.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shi-etal-2017-fast">
<titleInfo>
<title>Fast(er) Exact Decoding and Global Training for Transition-Based Dependency Parsing via a Minimal Feature Set</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tianze</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lillian</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We first present a minimal feature set for transition-based dependency parsing, continuing a recent trend started by Kiperwasser and Goldberg (2016a) and Cross and Huang (2016a) of using bi-directional LSTM features. We plug our minimal feature set into the dynamic-programming framework of Huang and Sagae (2010) and Kuhlmann et al. (2011) to produce the first implementation of worst-case O(n³) exact decoders for arc-hybrid and arc-eager transition systems. With our minimal features, we also present O(n³) global training methods. Finally, using ensembles including our new parsers, we achieve the best unlabeled attachment score reported (to our knowledge) on the Chinese Treebank and the “second-best-in-class” result on the English Penn Treebank.</abstract>
<identifier type="citekey">shi-etal-2017-fast</identifier>
<identifier type="doi">10.18653/v1/D17-1002</identifier>
<location>
<url>https://aclanthology.org/D17-1002</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>12</start>
<end>23</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fast(er) Exact Decoding and Global Training for Transition-Based Dependency Parsing via a Minimal Feature Set
%A Shi, Tianze
%A Huang, Liang
%A Lee, Lillian
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F shi-etal-2017-fast
%X We first present a minimal feature set for transition-based dependency parsing, continuing a recent trend started by Kiperwasser and Goldberg (2016a) and Cross and Huang (2016a) of using bi-directional LSTM features. We plug our minimal feature set into the dynamic-programming framework of Huang and Sagae (2010) and Kuhlmann et al. (2011) to produce the first implementation of worst-case O(n³) exact decoders for arc-hybrid and arc-eager transition systems. With our minimal features, we also present O(n³) global training methods. Finally, using ensembles including our new parsers, we achieve the best unlabeled attachment score reported (to our knowledge) on the Chinese Treebank and the “second-best-in-class” result on the English Penn Treebank.
%R 10.18653/v1/D17-1002
%U https://aclanthology.org/D17-1002
%U https://doi.org/10.18653/v1/D17-1002
%P 12-23
Markdown (Informal)
[Fast(er) Exact Decoding and Global Training for Transition-Based Dependency Parsing via a Minimal Feature Set](https://aclanthology.org/D17-1002) (Shi et al., EMNLP 2017)
ACL