@inproceedings{gupta-etal-2017-exploiting,
title = "Exploiting Morphological Regularities in Distributional Word Representations",
author = "Gupta, Arihant and
Akhtar, Syed Sarfaraz and
Vajpayee, Avijit and
Srivastava, Arjit and
Jhanwar, Madan Gopal and
Shrivastava, Manish",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1028",
doi = "10.18653/v1/D17-1028",
pages = "292--297",
abstract = "We present an unsupervised, language agnostic approach for exploiting morphological regularities present in high dimensional vector spaces. We propose a novel method for generating embeddings of words from their morphological variants using morphological transformation operators. We evaluate this approach on MSR word analogy test set with an accuracy of 85{\%} which is 12{\%} higher than the previous best known system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gupta-etal-2017-exploiting">
<titleInfo>
<title>Exploiting Morphological Regularities in Distributional Word Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arihant</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Syed</namePart>
<namePart type="given">Sarfaraz</namePart>
<namePart type="family">Akhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avijit</namePart>
<namePart type="family">Vajpayee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arjit</namePart>
<namePart type="family">Srivastava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Madan</namePart>
<namePart type="given">Gopal</namePart>
<namePart type="family">Jhanwar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manish</namePart>
<namePart type="family">Shrivastava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present an unsupervised, language agnostic approach for exploiting morphological regularities present in high dimensional vector spaces. We propose a novel method for generating embeddings of words from their morphological variants using morphological transformation operators. We evaluate this approach on MSR word analogy test set with an accuracy of 85% which is 12% higher than the previous best known system.</abstract>
<identifier type="citekey">gupta-etal-2017-exploiting</identifier>
<identifier type="doi">10.18653/v1/D17-1028</identifier>
<location>
<url>https://aclanthology.org/D17-1028</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>292</start>
<end>297</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploiting Morphological Regularities in Distributional Word Representations
%A Gupta, Arihant
%A Akhtar, Syed Sarfaraz
%A Vajpayee, Avijit
%A Srivastava, Arjit
%A Jhanwar, Madan Gopal
%A Shrivastava, Manish
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F gupta-etal-2017-exploiting
%X We present an unsupervised, language agnostic approach for exploiting morphological regularities present in high dimensional vector spaces. We propose a novel method for generating embeddings of words from their morphological variants using morphological transformation operators. We evaluate this approach on MSR word analogy test set with an accuracy of 85% which is 12% higher than the previous best known system.
%R 10.18653/v1/D17-1028
%U https://aclanthology.org/D17-1028
%U https://doi.org/10.18653/v1/D17-1028
%P 292-297
Markdown (Informal)
[Exploiting Morphological Regularities in Distributional Word Representations](https://aclanthology.org/D17-1028) (Gupta et al., EMNLP 2017)
ACL