@inproceedings{hopkins-etal-2017-beyond,
title = "Beyond Sentential Semantic Parsing: Tackling the Math {SAT} with a Cascade of Tree Transducers",
author = "Hopkins, Mark and
Petrescu-Prahova, Cristian and
Levin, Roie and
Le Bras, Ronan and
Herrasti, Alvaro and
Joshi, Vidur",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1083/",
doi = "10.18653/v1/D17-1083",
pages = "795--804",
abstract = "We present an approach for answering questions that span multiple sentences and exhibit sophisticated cross-sentence anaphoric phenomena, evaluating on a rich source of such questions {--} the math portion of the Scholastic Aptitude Test (SAT). By using a tree transducer cascade as its basic architecture, our system propagates uncertainty from multiple sources (e.g. coreference resolution or verb interpretation) until it can be confidently resolved. Experiments show the first-ever results 43{\%} recall and 91{\%} precision) on SAT algebra word problems. We also apply our system to the public Dolphin algebra question set, and improve the state-of-the-art F1-score from 73.9{\%} to 77.0{\%}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hopkins-etal-2017-beyond">
<titleInfo>
<title>Beyond Sentential Semantic Parsing: Tackling the Math SAT with a Cascade of Tree Transducers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Hopkins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cristian</namePart>
<namePart type="family">Petrescu-Prahova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roie</namePart>
<namePart type="family">Levin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ronan</namePart>
<namePart type="family">Le Bras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alvaro</namePart>
<namePart type="family">Herrasti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vidur</namePart>
<namePart type="family">Joshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present an approach for answering questions that span multiple sentences and exhibit sophisticated cross-sentence anaphoric phenomena, evaluating on a rich source of such questions – the math portion of the Scholastic Aptitude Test (SAT). By using a tree transducer cascade as its basic architecture, our system propagates uncertainty from multiple sources (e.g. coreference resolution or verb interpretation) until it can be confidently resolved. Experiments show the first-ever results 43% recall and 91% precision) on SAT algebra word problems. We also apply our system to the public Dolphin algebra question set, and improve the state-of-the-art F1-score from 73.9% to 77.0%.</abstract>
<identifier type="citekey">hopkins-etal-2017-beyond</identifier>
<identifier type="doi">10.18653/v1/D17-1083</identifier>
<location>
<url>https://aclanthology.org/D17-1083/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>795</start>
<end>804</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Beyond Sentential Semantic Parsing: Tackling the Math SAT with a Cascade of Tree Transducers
%A Hopkins, Mark
%A Petrescu-Prahova, Cristian
%A Levin, Roie
%A Le Bras, Ronan
%A Herrasti, Alvaro
%A Joshi, Vidur
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F hopkins-etal-2017-beyond
%X We present an approach for answering questions that span multiple sentences and exhibit sophisticated cross-sentence anaphoric phenomena, evaluating on a rich source of such questions – the math portion of the Scholastic Aptitude Test (SAT). By using a tree transducer cascade as its basic architecture, our system propagates uncertainty from multiple sources (e.g. coreference resolution or verb interpretation) until it can be confidently resolved. Experiments show the first-ever results 43% recall and 91% precision) on SAT algebra word problems. We also apply our system to the public Dolphin algebra question set, and improve the state-of-the-art F1-score from 73.9% to 77.0%.
%R 10.18653/v1/D17-1083
%U https://aclanthology.org/D17-1083/
%U https://doi.org/10.18653/v1/D17-1083
%P 795-804
Markdown (Informal)
[Beyond Sentential Semantic Parsing: Tackling the Math SAT with a Cascade of Tree Transducers](https://aclanthology.org/D17-1083/) (Hopkins et al., EMNLP 2017)
ACL