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Abstract

Knowledge base population (KBP) sys-
tems take in a large document corpus and
extract entities and their relations. Thus
far, KBP evaluation has relied on judge-
ments on the pooled predictions of exist-
ing systems. We show that this evalua-
tion is problematic: when a new system
predicts a previously unseen relation, it is
penalized even if it is correct. This leads
to significant bias against new systems,
which counterproductively discourages in-
novation in the field. Our first contribu-
tion is a new importance-sampling based
evaluation which corrects for this bias by
annotating a new system’s predictions on-
demand via crowdsourcing. We show this
eliminates bias and reduces variance using
data from the 2015 TAC KBP task. Our
second contribution is an implementation
of our method made publicly available as
an online KBP evaluation service. We pi-
lot the service by testing diverse state-of-
the-art systems on the TAC KBP 2016 cor-
pus and obtain accurate scores in a cost ef-
fective manner.

1 Introduction

Harnessing the wealth of information present in
unstructured text online has been a long stand-
ing goal for the natural language processing com-
munity. In particular, knowledge base popula-
tion seeks to automatically construct a knowl-
edge base consisting of relations between entities
from a document corpus. Knowledge bases have
found many applications including question an-
swering (Berant et al., 2013; Fader et al., 2014;
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Figure 1: An example describing entities and re-
lations in knowledge base population.

Reddy et al., 2014), automated reasoning (Kalyan-
pur et al., 2012) and dialogue (Han et al., 2015).

Evaluating these systems remains a challenge
as it is not economically feasible to exhaustively
annotate every possible candidate relation from a
sufficiently large corpus. As a result, a pooling-
based methodology is used in practice to construct
datasets, similar to them methodology used in in-
formation retrieval (Jones and Rijsbergen, 1975;
Harman, 1993). For instance, at the annual NIST
TAC KBP evaluation, all relations predicted by
participating systems are pooled together, anno-
tated and released as a dataset for researchers to
develop and evaluate their systems on. However,
during development, if a new system predicts a
previously unseen relation it is considered to be
wrong even if it is correct. The discrepancy be-
tween a system’s true score and the score on the
pooled dataset is called pooling bias and is typi-
cally assumed to be insignificant in practice (Zo-
bel, 1998).

The key finding of this paper contradicts this as-
sumption and shows that the pooling bias is actu-
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ally significant, and it penalizes newly developed
systems by 2% F1 on average (Section 3). Novel
improvements, which typically increase scores by
less than 1% F1 on existing datasets, are there-
fore likely to be clouded by pooling bias during
development. Worse, the bias is larger for a sys-
tem which predicts qualitatively different relations
systematically missing from the pool. Of course,
systems participating in the TAC KBP evaluation
do not suffer from pooling bias, but this requires
researchers to wait a year to get credible feedback
on new ideas.

This bias is particularly counterproductive for
machine learning methods as they are trained as-
suming the pool is the complete set of positives.
Predicting unseen relations and learning novel pat-
terns is penalized. The net effect is that researchers
are discouraged from developing innovative ap-
proaches, in particular from applying machine
learning, thereby slowing progress on the task.

Our second contribution, described in Sec-
tion 4, addresses this bias through a new evalua-
tion methodology, on-demand evaluation, which
avoids pooling bias by querying crowdworkers,
while minimizing cost by leveraging previous sys-
tems’ predictions when possible. We then com-
pute the new system’s score based on the predic-
tions of past systems using importance weighting.
As more systems are evaluated, the marginal cost
of evaluating a new system decreases. We show
how the on-demand evaluation methodology can
be applied to knowledge base population in Sec-
tion 5. Through a simulated experiment on eval-
uation data released through the TAC KBP 2015
Slot Validation track, we show that we are able to
obtain unbiased estimates of a new systems score’s
while significantly reducing variance.

Finally, our third contribution is an implementa-
tion of our framework as a publicly available eval-
uation service at https://kbpo.stanford.
edu, where researchers can have their own KBP
systems evaluated. The data collected through the
evaluation process could even be valuable for rela-
tion extraction, entity linking and coreference, and
will also be made publicly available through the
website. We evaluate three systems on the 2016
TAC KBP corpus for about $150 each (a fraction
of the cost of official evaluation). We believe the
public availability of this service will speed the
pace of progress in developing KBP systems.

Humans

System A

System B

System C

i1 : (s1, r, o1, p1)

i2 : (s1, r, o2, p2)

i3 : (s1, r, o3, p3)

i4 : (s1, r, o2, p4)

i5 : (s1, r, o3, p5)

i6 : (s1, r, o4, p6)

X
X
X
X
×
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Figure 2: In pooled evaluation, an evaluation
dataset is constructed by labeling relation in-
stances collected from the pooled systems (A and
B) and from a team of human annotators (Hu-
mans). However, when a new system (C) is evalu-
ated on this dataset, some of its predictions (i6) are
missing and can not be fairly evaluated. Here, the
precision and recall for C should be 3

3 and 3
4 re-

spectively, but its evaluation scores are estimated
to be 2

3 and 2
3 . The discrepancy between these two

scores is called pooling bias.

2 Background

In knowledge base population, each relation is
a triple (SUBJECT, PREDICATE, OBJECT) where
SUBJECT and OBJECT are some globally unique
entity identifiers (e.g. Wikipedia page titles) and
PREDICATE belongm to a specified schema.1 A
KBP system returns an output in the form of re-
lation instances (SUBJECT, PREDICATE, OBJECT,
PROVENANCE), where PROVENANCE is a descrip-
tion of where exactly in the document corpus the
relation was found. In the example shown in Fig-
ure 1, CARRIE FISHER and DEBBIE REYNOLDS

are identified as the subject and object, respec-
tively, of the predicate CHILD OF, and the whole
sentence is provided as provenance. The prove-
nance also identifies that CARRIE FISHER is ref-
erenced by Fisher within the sentence. Note that
the same relation can be expressed in multiple sen-
tences across the document corpus; each of these
is a different relation instance.

Pooled evaluation. The primary source of eval-
uation data for KBP comes from the annual TAC
KBP competition organized by NIST (Ji et al.,

1The TAC KBP guidelines specify a total of 65
predicates (including inverses) such as per:title or
org:founded on, etc. Subject entities can be people, or-
ganizations, geopolitical entities, while object entities also
include dates, numbers and arbitrary string-values like job ti-
tles.
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2011). Let E be a held-out set of evaluation en-
tities. There are two steps performed in parallel:
First, each participating system is run on the docu-
ment corpus to produce a set of relation instances;
those whose subjects are in E are labeled as either
positive or negative by annotators. Second, a team
of annotators identify and label correct relation in-
stances for the evaluation entities E by manually
searching the document corpus within a time bud-
get (Ellis et al., 2012). These labeled relation in-
stances from the two steps are combined and re-
leased as the evaluation dataset. In the example in
Figure 2, systems A and B were used in construct-
ing the pooling dataset, and there are 3 distinct re-
lations in the dataset, between s1 and o1, o2, o3.

A system is evaluated on the precision of its
predicted relation instances for the evaluation en-
tities E and on the recall of the corresponding pre-
dicted relations (not instances) for the same enti-
ties (see Figure 2 for a worked example). When
using the evaluation data during system develop-
ment, it is common practice to use the more le-
nient anydoc score that ignores the provenance
when checking if a relation instance is true. Un-
der this metric, predicting the relation (CARRIE

FISHER, CHILD OF, DEBBIE REYNOLDS) from
an ambiguous provenance like “Carrie Fisher and
Debbie Reynolds arrived together at the awards
show” would be considered correct even though it
would be marked wrong under the official metric.

3 Measuring pooling bias

The example in Figure 2 makes it apparent that
pooling-based evaluation can introduce a system-
atic bias against unpooled systems. However, it
has been assumed that the bias is insignificant in
practice given the large number of systems pooled
in the TAC KBP evaluation. We will now show
that the assumption is not valid using data from
the TAC KBP 2015 evaluation.2

Measuring bias. In total, there are 70 system
submissions from 18 teams for 317 evaluation en-
tities (E) and the evaluation set consists of 11,008
labeled relation instances.3 The original evalua-

2Our results are not qualitatively different on data from
previous years of the shared task.

3The evaluation set is actually constructed from composi-
tional queries like, “what does Carrie Fisher’s parents do?”:
these queries select relation instances that answer the ques-
tion “who are Carrie Fisher’s parents?”, and then use those
answers (e.g. “Debbie Reynolds”) to select relation instances
that answer “what does Debbie Reynolds do?”. We only con-

Median bias
Precision Recall Macro F1

Official 17.93% 17.00% 15.51%
anydoc 2.34% 1.93% 2.05%

Figure 3: Median pooling bias (difference be-
tween pooled and unpooled scores) on the top 40
systems of TAC KBP 2015 evaluation using the
official and anydoc scores. The bias is much
smaller for the lenient anydoc metric, but even
so, it is larger than the largest difference between
adjacent systems (1.5%F1) and typical system im-
provements (around 1% F1).

tion dataset gives us a good measure of the true
scores for the participating systems. Similar to Zo-
bel (1998), which studied pooling bias in informa-
tion retrieval, we simulate the condition of a team
not being part of the pooling process by removing
any predictions that are unique to its systems from
the evaluation dataset. The pooling bias is then the
difference between the true and unpooled scores.

Results. Figure 3 shows the results of measur-
ing pooling bias on the TAC KBP 2015 eval-
uation on the F1 metric using the official and
anydoc scores.45 We observe that even with le-
nient anydoc heuristic, the median bias (2.05%
F1) is much larger than largest difference between
adjacently ranked systems (1.5% F1). This ex-
periment shows that pooling evaluation is signif-
icantly and systematically biased against systems
that make novel predictions!

sider instances selected in the first part of this process.
4We note that anydoc scores are on average 0.88%F1

larger than the official scores.
5 The outlier at rank 36 corresponds to a University of

Texas, Austin system that only filtered predictions from other
systems and hence has no unique predictions itself.
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4 On-demand evaluation with
importance sampling

Pooling bias is fundamentally a sampling bias
problem where relation instances from new sys-
tems are underrepresented in the evaluation
dataset. We could of course sidestep the prob-
lem by exhaustively annotating the entire docu-
ment corpus, by annotating all mentions of en-
tities and checking relations between all pairs of
mentions. However, that would be a laborious and
prohibitively expensive task: using the interfaces
we’ve developed (Section 6), it costs about $15 to
annotate a single document by non-expert crowd-
workers, resulting in an estimated cost of at least
$1,350,000 for a reasonably large corpus of 90,000
documents (Dang, 2016). The annotation effort
would cost significantly more with expert annota-
tors. In contrast, labeling relation instances from
system predictions can be an order of magnitude
cheaper than finding them in documents: using our
interfaces, it costs only about $0.18 to verify each
relation instance compared to $1.60 per instance
extracted through exhaustive annotations.

We propose a new paradigm called on-demand
evaluation which takes a lazy approach to dataset
construction by annotating predictions from sys-
tems only when they are underrepresented, thus
correcting for pooling bias as it arises. In this sec-
tion, we’ll formalize the problem solved by on-
demand evaluation independent of KBP and de-
scribe a cost-effective solution that allows us to
accurately estimate evaluation scores without bias
using importance sampling. We’ll then instantiate
the framework for KBP in Section 5.

4.1 Problem statement

Let X be the universe of (relation) instances, Y ⊆
X be the unknown subset of correct instances,
X1, . . . Xm ⊆ X be the predictions for m sys-
tems, and let Yi = Xi ∩ Y . Let X =

⋃m
i=1Xi

and Y =
⋃m

i=1 Yi. Let f(x) def
= I[x ∈ Y] and

gi(x) = I[x ∈ Xi], then the precision, πi, and
recall, ri, of the set of predictions Xi is

πi
def
= Ex∼pi [f(x)] ri

def
= Ex∼p0 [gi(x)],

where pi is a distribution over Xi and p0 is a dis-
tribution over Y . We assume that pi is known, e.g.
the uniform distribution overXi and that we know
p0 up to normalization constant and can sample
from it.

In on-demand evaluation, we can query f(x)
(e.g. labeling an instance) or draw a sample
from p0; typically, querying f(x) is significantly
cheaper than sampling from p0. We obtain predic-
tion sets X1, . . . , Xm sequentially as the systems
are submitted for evaluation. Our goal is to esti-
mate πi and ri for each system i = 1, . . . ,m.

4.2 Simple estimators

We can estimate each πi and ri independently with
simple Monte Carlo integration. Let X̂1, . . . , X̂m

be multi-sets of n1, . . . , nj i.i.d. samples from
X1, . . . , Xm respectively, and let Ŷ0 be a multi-
set of n0 samples drawn from Y . Then, the simple
estimators for precision and recall are:

π̂
(simple)
i =

1

ni

∑

x∈X̂i

f(x) r̂
(simple)
i =

1

n0

∑

x∈Ŷ0

gi(x).

4.3 Joint estimators6

The simple estimators are unbiased but have
wastefully large variance because evaluating a new
system does not leverage labels acquired for pre-
vious systems.

On-demand evaluation with the joint estimator
works as follows: First Ŷ0 is randomly sampled
from Y once when the evaluation framework is
launched. For every new set of predictions Xm

submitted for evaluation, the minimum number of
samples nm required to accurately evaluate Xm is
calculated based on the current evaluation data, Ŷ0
and X̂1, . . . , X̂m−1. Then, the set X̂m is added to
the evaluation data by evaluating f(x) on nm sam-
ples drawn from Xm. Finally, estimates πi and ri
are updated for each system i = 1, . . . ,m using
the joint estimators that will be defined next. In
the rest of this section, we will answer the follow-
ing three questions:

1. How can we use all the samples X̂1, . . . X̂m

when estimating the precision πi of system i?

2. How can we use all the samples X̂1, . . . , X̂m

with Ŷ0 when estimating recall ri?

3. Finally, to form X̂m, how many samples
should we draw fromXm given existing sam-
ples and X̂1, . . . , X̂m−1 and Ŷ0?

Estimating precision jointly. Intuitively, if two
systems have very similar predictions Xi and Xj ,

6Proofs for claims made in this section can be found in
Appendix B of the supplementary material.
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we should be able to use samples from one to es-
timate precision on the other. However, it might
also be the case that Xi and Xj only overlap on a
small region, in which case the samples from Xj

do not accurately represent instances in Xi and
could lead to a biased estimate. We address this
problem by using importance sampling (Owen,
2013), a standard statistical technique for estimat-
ing properties of one distribution using samples
from another distribution.

In importance sampling, if X̂i is sampled from
qi, then 1

ni

∑
x∈X̂i

pi(x)
qi(x)

f(x) is an unbiased esti-
mate of πi. We would like the proposal distribu-
tion qi to both leverage samples from all m sys-
tems and be tailored towards system i. To this
end, we first define a distribution over systems j,
represented by probabilities wij . Then, define qi
as sampling a j and drawing x ∼ pj ; formally
qi(x) =

∑m
j=1wijpj(x).

We note that qi(x) not only significantly differs
between systems, but also changes as new systems
are added to the evaluation pool. Unfortunately,
the standard importance sampling procedure re-
quires us to draw and use samples from each dis-
tribution qi(x) independently and thus can not ef-
fectively reuse samples drawn from different dis-
tributions. To this end, we introduce a practical
refinement to the importance sampling procedure:
we independently draw nj samples according to
pj(x) from each of the m systems independently
and then numerically integrate over these samples
using the weights wij to “mix” them appropriately
to produce and unbiased estimate of πi while re-
ducing variance. Formally, we define the joint pre-
cision estimator:

π̂
(joint)
i

def
=

m∑

j=1

wij

nj

∑

x∈X̂j

pi(x)f(x)

qi(x)
,

where each X̂j consists of nj i.i.d. samples drawn
from pj .

It is a hard problem to determine what the op-
timal mixing weights wij should be. However,
we can formally verify that if Xi and Xj are dis-
joint, then wij = 0 minimizes the variance of
πi, and if Xi = Xj , then wij ∝ nj is opti-
mal. This motivates the following heuristic choice
which interpolates between these two extremes:
wij ∝ nj

∑
x∈X pj(x)pi(x).

Estimating recall jointly. The recall of system
i can be expressed can be expressed as a product

ri = θνi, where θ is the recall of the pool, which
measures the fraction of all positive instances pre-
dicted by the pool (any system), and νi is the
pooled recall of system i, which measures the frac-
tion of the pool’s positive instances predicted by
system i. Letting g(x) def

= I[x ∈ X], we can de-
fine these as:

νi
def
= Ex∼p0 [gi(x) | x ∈ X] θ

def
= Ex∼p0 [g(x)].

We can estimate θ analogous to the simple recall
estimator r̂i, except we use the pool g instead a
system gi. For νi, the key is to leverage the work
from estimating precision. We already evaluated
f(x) on X̂i, so we can compute Ŷi

def
= X̂i ∩Y and

form the subset Ŷ =
⋃m

i=1 Ŷi. Ŷ is an approx-
imation of Y whose bias we can correct through
importance reweighting. We then define estima-
tors as follows:

ν̂i
def
=

∑m
j=1

wij

nj

∑
x∈Ŷj

p0(x)gi(x)
qi(x)∑m

j=1
wij

nj

∑
x∈Ŷj

p0(x)
qi(x)

r̂
(joint)
i

def
= θ̂ν̂i θ̂

def
=

1

n0

∑

x∈Ŷ0

g(x).

where qi and wij are the same as before.

Adaptively choosing the number of samples.
Finally, a desired property for on-demand evalu-
ation is to label new instances only when the cur-
rent evaluation data is insufficient, e.g. when a new
set of predictionsXm contains many instances not
covered by other systems. We can measure how
well the current evaluation set covers the predic-
tions Xm by using a conservative estimate of the
variance of π̂(joint)

m .7 In particular, the variance
of π̂(joint)

m is a monotonically decreasing function
in nm, the number of samples drawn from Xm.
We can easily solve for the minimum number of
samples required to estimate π̂(joint)

m within a con-
fidence interval ε by using the bisection method
(Burden and Faires, 1985).

5 On-demand evaluation for KBP

Applying the on-demand evaluation framework to
a task requires us to answer three questions:

1. What is the desired distribution over system
predictions pi?

7Further details can be found in Appendix B of the sup-
plementary material.
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2. How do we label an instance x, i.e. check if
x ∈ Y?

3. How do we sample from the unknown set of
true instances x ∼ p0?

In this section, we present practical implementa-
tions for knowledge base population.

5.1 Sampling from system predictions
Both the official TAC-KBP evaluation and the
on-demand evaluation we propose use micro-
averaged precision and recall as metrics. However,
in the official evaluation, these metrics are com-
puted over a fixed set of evaluation entities chosen
by LDC annotators, resulting in two problems: (a)
defining evaluation entities requires human inter-
vention and (b) typically a large source of vari-
ability in evaluation scores comes from not hav-
ing enough evaluation entities (see e.g. (Webber,
2010)). In our methodology, we replace manu-
ally chosen evaluation entities by sampling entities
from each system’s output according pi. In effect,
pi makes explicit the decision process of the anno-
tator who chooses evaluation entities.

Identifying a reasonable distribution pi is an im-
portant implementation decision that depends on
what one wishes to evaluate. Our goal for the on-
demand evaluation service we have implemented
is to ensure that KBP systems are fairly evalu-
ated on diverse subjects and predicates, while at
the same time, ensuring that entities with multiple
relations are represented to measure completeness
of knowledge base entries. As a result, we propose
a distribution that is inversely proportional to the
frequency of the subject and predicate and is pro-
portional to the number of unique relations iden-
tified for an entity (to measure knowledge base
completeness). See Appendix A in the supplemen-
tary material for an analysis of this distribution and
a study of other potential choices.

5.2 Labeling predicted instances
We label predicted relation instances by present-
ing the instance’s provenance to crowdworkers
and asking them to identify if a relation holds be-
tween the identified subject and object mentions
(Figure 4a). Crowdworkers are also asked to link
the subject and object mentions to their canoni-
cal mentions within the document and to pages on
Wikipedia, if possible, for entity linking. On av-
erage, we find that crowdworkers are able to per-
form this task in about 20 seconds, correspond-

ing to about $0.05 per instance. We requested 5
crowdworkers to annotate a small set of 200 rela-
tion instances from the 2015 TAC-KBP corpus and
measured a substantial inter-annotator agreement
with a Fleiss’ kappa of 0.61 with 3 crowdworkers
and 0.62 with 5. Consequently, we take a majority
vote over 3 workers in subsequent experiments.

5.3 Sampling true instances

Sampling from the set of true instances Y is diffi-
cult because we can’t even enumerate the elements
of Y . As a proxy, we assume that relations are
identically distributed across documents and have
crowdworkers annotate a random subset of doc-
uments for relations using an interface we devel-
oped (Figure 4b). Crowdworkers begin by iden-
tifying every mention span in a document. For
each mention, they are asked to identify its type,
canonical mention within the document and asso-
ciated Wikipedia page if possible. They are then
presented with a separate interface to label predi-
cates between pairs of mentions within a sentence
that were identified earlier.

We compare crowdsourced annotations against
those of expert annotators using data from the TAC
KBP 2015 EDL task on 10 randomly chosen docu-
ments. We find that 3 crowdworkers together iden-
tify 92% of the entity spans identified by expert
annotators, while 7 crowdworkers together iden-
tify 96%. When using a token-level majority vote
to identify entities, 3 crowdworkers identify about
78% of the entity spans; this number does not
change significantly with additional crowdwork-
ers. We also measure substantial token-level inter-
annotator agreement using Fleiss’ kappa for iden-
tifying typed mention spans (κ = 0.83), canonical
mentions (κ = 0.75) and entity links (κ = 0.75)
with just three workers. Based on this analysis, we
use token-level majority over 3 workers in subse-
quent experiments.

The entity annotation interface is far more in-
volved and takes on average about 13 minutes per
document, corresponding to about $2.60 per docu-
ment, while the relation annotation interface takes
on average about $2.25 per document. Because
documents vary significantly in length and com-
plexity, we set rewards for each document based
on the number of tokens (.75c per token) and men-
tion pairs (5c per pair) respectively. With 3 work-
ers per document, we paid about $15 per document
on average. Each document contained an average
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Sys. P R F1

TAC KBP evaluation
P 47.6% 11.0% 17.9%
P+L 35.5% 18.4% 24.2%
P+L+N 26.3% 27.0% 26.6%

On-demand evaluation
P 74.7% 5.8% 10.8%
P+L 54.7% 7.6% 13.3%
P+L+N 34.0% 9.8% 15.2%

(f)

Figure 4: (a, b): Interfaces for annotating relations and entities respectively. (c, d): A comparison of
bias for the pooling, simple and joint estimators on the TAC KBP 2015 challenge. Each point in the figure
is a mean of 500 repeated trials; dotted lines show the 90% quartile. Both the simple and joint estimators
are unbiased, and the joint estimator is able to significantly reduce variance. (e): A comparison of the
number of samples used to estimate scores under the fixed and adaptive sample selection scheme. Each
faint line shows the number of samples used during a single trial, while solid lines show the mean over
100 trials. The dashed line shows a square-root relationship between the number of systems evaluated
and the number of samples required. Thus joint estimation combined with adaptive sample selection can
reduce the number of labeled annotations required by an order of magnitude. (f): Precision (P ), recall
(R) and F1 scores from a pilot run of our evaluation service for ensembles of a rule-based system (R), a
logistic classifier (L) and a neural network classifier (N) run on the TAC KBP 2016 document corpus.
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9.2 relations, resulting in a cost of about $1.61 per
relation instance. We note that this is about ten
times as much as labeling a relation instance.

We defer details regarding how documents
themselves should be weighted to capture diverse
entities that span documents to Appendix A.

6 Evaluation

Let us now see how well on-demand evaluation
works in practice. We begin by empirically study-
ing the bias and variance of the joint estimator pro-
posed in Section 4 and find it is able to correct for
pooling bias while significantly reducing variance
in comparison with the simple estimator. We then
demonstrate that on-demand evaluation can serve
as a practical replacement for the TAC KBP eval-
uations by piloting a new evaluation service we
have developed to evaluate three distinct systems
on TAC KBP 2016 document corpus.

6.1 Bias and variance of the on-demand
evaluation.

Once again, we use the labeled system predictions
from the TAC KBP 2015 evaluation and treat them
as an exhaustively annotated dataset. To evaluate
the pooling methodology we construct an evalua-
tion dataset using instances found by human an-
notators and labeled instances pooled from 9 ran-
domly chosen teams (i.e. half the total number
of participating teams), and use this dataset to
evaluate the remaining 9 teams. On average, the
pooled evaluation dataset contains between 5,000
and 6,000 labeled instances and evaluates 34 dif-
ferent systems (since each team may have submit-
ted multiple systems). Next, we evaluated sets of 9
randomly chosen teams with our proposed simple
and joint estimators using a total of 5,000 samples:
about 150 of these samples are drawn from Y , i.e.
the full TAC KBP 2015 evaluation data, and 150
samples from each of the systems being evaluated.

We repeat the above simulated experiment 500
times and compare the estimated precision and
recall with their true values (Figure 4). The
simulations once again highlights that the pooled
methodology is biased, while the simple and joint
estimators are not. Furthermore, the joint estima-
tors significantly reduce variance relative to the
simple estimators: the median 90% confidence
intervals reduce from 0.14 to 0.06 precision and
from 0.14 to 0.08 for recall.

6.2 Number of samples required by
on-demand evaluation

Separately, we evaluate the efficacy of the adaptive
sample selection method described in Section 4.3
through another simulated experiment. In each
trial of this experiment, we evaluate the top 40
systems in random order. As each subsequent sys-
tem is evaluated, the number of samples to pick
from the system is chosen to meet a target variance
and added to the current pool of labeled instances.
To make the experiment more interpretable, we
choose the target variance to correspond with the
estimated variance of having 500 samples. Fig-
ure 4 plots the results of the experiment. The
number of samples required to estimate systems
quickly drops off from the benchmark of 500 sam-
ples as the pool of labeled instances covers more
systems. This experiment shows that on-demand
evaluation using joint estimation can scale up to
an order of magnitude more submissions than a
simple estimator for the same cost.

6.3 A mock evaluation for TAC KBP 2016

We have implemented the on-demand evaluation
framework described here as an evaluation service
to which researchers can submit their own system
predictions. As a pilot of the service, we evaluated
three relation extraction systems that also partici-
pated in the official 2016 TAC KBP competition.
Each system uses Stanford CoreNLP (Manning
et al., 2014) to identify entities, the Illinois Wiki-
fier (Ratinov et al., 2011) to perform entity linking
and a combination of a rule-based system (P), a
logistic classifier (L), and a neural network classi-
fier (N) for relation extraction. We used 15,000
Newswire documents from the 2016 TAC KBP
evaluation as our document corpus. In total, 100
documents were exhaustively annotated for about
$2,000 and 500 instances from each system were
labeled for about $150 each. Evaluating all three
system only took about 2 hours.

Figure 4f reports scores obtained through on-
demand evaluation of these systems as well
as their corresponding official TAC evaluation
scores. While the relative ordering of systems be-
tween the two evaluations is the same, we note
that precision and recall as measured through on-
demand evaluation are respectively higher and
lower than the official scores. This is to be ex-
pected because on-demand evaluation measures
precision using each systems output as opposed
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to an externally defined set of evaluation entities.
Likewise, recall is measured using exhaustive an-
notations of relations within the corpus instead of
annotations from pooled output in the official eval-
uation.

7 Related work

The subject of pooling bias has been extensively
studied in the information retrieval (IR) commu-
nity starting with Zobel (1998), which examined
the effects of pooling bias on the TREC AdHoc
task, but concluded that pooling bias was not a
significant problem. However, when the topic was
later revisited, Buckley et al. (2007) identified that
the reason for the small bias was because the sub-
missions to the task were too similar; upon repeat-
ing the experiment using a novel system as part
of the TREC Robust track, they identified a 23%
point drop in average precision scores!8

Many solutions to the pooling bias problem
have been proposed in the context of information
retrieval, e.g. adaptively constructing the pool to
collect relevant data more cost-effectively (Zobel,
1998; Cormack et al., 1998; Aslam et al., 2006),
or modifying the scoring metrics to be less sen-
sitive to unassessed data (Buckley and Voorhees,
2004; Sakai and Kando, 2008; Aslam et al., 2006).
Many of these ideas exploit the ranking of docu-
ments in IR which does not apply to KBP. While
both Aslam et al. (2006) and Yilmaz et al. (2008)
estimate evaluation metrics by using importance
sampling estimators, the techniques they propose
require knowing the set of all submissions before-
hand. In contrast, our on-demand methodology
can produce unbiased evaluation scores for new
development systems as well.

There have been several approaches taken to
crowdsource data pertinent to knowledge base
population (Vannella et al., 2014; Angeli et al.,
2014; He et al., 2015; Liu et al., 2016). The most
extensive annotation effort is probably Pavlick
et al. (2016), which crowdsources a knowledge
base for gun-violence related events. In contrast to
previous work, our focus is on evaluating systems,
not collecting a dataset. Furthermore, our main
contribution is not a large dataset, but an evalua-
tion service that allows anyone to use crowdsourc-
ing predictions made by their system.

8For the interested reader, Webber (2010) presents an ex-
cellent survey of the literature on pooling bias.

8 Discussion

Over the last ten years of the TAC KBP task, the
gap between human and system performance has
barely narrowed despite the community’s best ef-
forts: top automated systems score less than 36%
F1 while human annotators score more than 60%.
In this paper, we’ve shown that the current eval-
uation methodology may be a contributing factor
because of its bias against novel system improve-
ments. The new on-demand framework proposed
in this work addresses this problem by obtaining
human assessments of new system output through
crowdsourcing. The framework is made economi-
cally feasible by carefully sampling output to be
assessed and correcting for sample bias through
importance sampling.

Of course, simply providing better evaluation
scores is only part of the solution and it is clear
that better datasets are also necessary. However,
the very same difficulties in scale that make eval-
uating KBP difficult also make it hard to collect
a high quality dataset for the task. As a result,
existing datasets (Angeli et al., 2014; Adel et al.,
2016) have relied on the output of existing sys-
tems, making it likely that they exhibit the same
biases against novel systems that we’ve discussed
in this paper. We believe that providing a fair and
standardized evaluation platform as a service al-
lows researchers to exploit such datasets and while
still being able to accurately measure their perfor-
mance on the knowledge base population task.

There are many other tasks in NLP that are even
harder to evaluate than KBP. Existing evaluation
metrics for tasks with a generation component—
such as summarization or dialogue—leave much
to be desired. We believe that adapting the ideas
of this paper to those tasks is a fruitful direction, as
progress of a research community is strongly tied
to the fidelity of evaluation.
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