@inproceedings{al-khatib-etal-2017-patterns,
title = "Patterns of Argumentation Strategies across Topics",
author = "Al-Khatib, Khalid and
Wachsmuth, Henning and
Hagen, Matthias and
Stein, Benno",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1141/",
doi = "10.18653/v1/D17-1141",
pages = "1351--1357",
abstract = "This paper presents an analysis of argumentation strategies in news editorials within and across topics. Given nearly 29,000 argumentative editorials from the New York Times, we develop two machine learning models, one for determining an editorial`s topic, and one for identifying evidence types in the editorial. Based on the distribution and structure of the identified types, we analyze the usage patterns of argumentation strategies among 12 different topics. We detect several common patterns that provide insights into the manifestation of argumentation strategies. Also, our experiments reveal clear correlations between the topics and the detected patterns."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="al-khatib-etal-2017-patterns">
<titleInfo>
<title>Patterns of Argumentation Strategies across Topics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Al-Khatib</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Henning</namePart>
<namePart type="family">Wachsmuth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Hagen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benno</namePart>
<namePart type="family">Stein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents an analysis of argumentation strategies in news editorials within and across topics. Given nearly 29,000 argumentative editorials from the New York Times, we develop two machine learning models, one for determining an editorial‘s topic, and one for identifying evidence types in the editorial. Based on the distribution and structure of the identified types, we analyze the usage patterns of argumentation strategies among 12 different topics. We detect several common patterns that provide insights into the manifestation of argumentation strategies. Also, our experiments reveal clear correlations between the topics and the detected patterns.</abstract>
<identifier type="citekey">al-khatib-etal-2017-patterns</identifier>
<identifier type="doi">10.18653/v1/D17-1141</identifier>
<location>
<url>https://aclanthology.org/D17-1141/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1351</start>
<end>1357</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Patterns of Argumentation Strategies across Topics
%A Al-Khatib, Khalid
%A Wachsmuth, Henning
%A Hagen, Matthias
%A Stein, Benno
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F al-khatib-etal-2017-patterns
%X This paper presents an analysis of argumentation strategies in news editorials within and across topics. Given nearly 29,000 argumentative editorials from the New York Times, we develop two machine learning models, one for determining an editorial‘s topic, and one for identifying evidence types in the editorial. Based on the distribution and structure of the identified types, we analyze the usage patterns of argumentation strategies among 12 different topics. We detect several common patterns that provide insights into the manifestation of argumentation strategies. Also, our experiments reveal clear correlations between the topics and the detected patterns.
%R 10.18653/v1/D17-1141
%U https://aclanthology.org/D17-1141/
%U https://doi.org/10.18653/v1/D17-1141
%P 1351-1357
Markdown (Informal)
[Patterns of Argumentation Strategies across Topics](https://aclanthology.org/D17-1141/) (Al-Khatib et al., EMNLP 2017)
ACL
- Khalid Al-Khatib, Henning Wachsmuth, Matthias Hagen, and Benno Stein. 2017. Patterns of Argumentation Strategies across Topics. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1351–1357, Copenhagen, Denmark. Association for Computational Linguistics.