@inproceedings{dahlmann-etal-2017-neural,
title = "Neural Machine Translation Leveraging Phrase-based Models in a Hybrid Search",
author = "Dahlmann, Leonard and
Matusov, Evgeny and
Petrushkov, Pavel and
Khadivi, Shahram",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1148",
doi = "10.18653/v1/D17-1148",
pages = "1411--1420",
abstract = "In this paper, we introduce a hybrid search for attention-based neural machine translation (NMT). A target phrase learned with statistical MT models extends a hypothesis in the NMT beam search when the attention of the NMT model focuses on the source words translated by this phrase. Phrases added in this way are scored with the NMT model, but also with SMT features including phrase-level translation probabilities and a target language model. Experimental results on German-to-English news domain and English-to-Russian e-commerce domain translation tasks show that using phrase-based models in NMT search improves MT quality by up to 2.3{\%} BLEU absolute as compared to a strong NMT baseline.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dahlmann-etal-2017-neural">
<titleInfo>
<title>Neural Machine Translation Leveraging Phrase-based Models in a Hybrid Search</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leonard</namePart>
<namePart type="family">Dahlmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Evgeny</namePart>
<namePart type="family">Matusov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pavel</namePart>
<namePart type="family">Petrushkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shahram</namePart>
<namePart type="family">Khadivi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we introduce a hybrid search for attention-based neural machine translation (NMT). A target phrase learned with statistical MT models extends a hypothesis in the NMT beam search when the attention of the NMT model focuses on the source words translated by this phrase. Phrases added in this way are scored with the NMT model, but also with SMT features including phrase-level translation probabilities and a target language model. Experimental results on German-to-English news domain and English-to-Russian e-commerce domain translation tasks show that using phrase-based models in NMT search improves MT quality by up to 2.3% BLEU absolute as compared to a strong NMT baseline.</abstract>
<identifier type="citekey">dahlmann-etal-2017-neural</identifier>
<identifier type="doi">10.18653/v1/D17-1148</identifier>
<location>
<url>https://aclanthology.org/D17-1148</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1411</start>
<end>1420</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Machine Translation Leveraging Phrase-based Models in a Hybrid Search
%A Dahlmann, Leonard
%A Matusov, Evgeny
%A Petrushkov, Pavel
%A Khadivi, Shahram
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F dahlmann-etal-2017-neural
%X In this paper, we introduce a hybrid search for attention-based neural machine translation (NMT). A target phrase learned with statistical MT models extends a hypothesis in the NMT beam search when the attention of the NMT model focuses on the source words translated by this phrase. Phrases added in this way are scored with the NMT model, but also with SMT features including phrase-level translation probabilities and a target language model. Experimental results on German-to-English news domain and English-to-Russian e-commerce domain translation tasks show that using phrase-based models in NMT search improves MT quality by up to 2.3% BLEU absolute as compared to a strong NMT baseline.
%R 10.18653/v1/D17-1148
%U https://aclanthology.org/D17-1148
%U https://doi.org/10.18653/v1/D17-1148
%P 1411-1420
Markdown (Informal)
[Neural Machine Translation Leveraging Phrase-based Models in a Hybrid Search](https://aclanthology.org/D17-1148) (Dahlmann et al., EMNLP 2017)
ACL