@inproceedings{keith-etal-2017-identifying,
title = "Identifying civilians killed by police with distantly supervised entity-event extraction",
author = "Keith, Katherine and
Handler, Abram and
Pinkham, Michael and
Magliozzi, Cara and
McDuffie, Joshua and
O{'}Connor, Brendan",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1163/",
doi = "10.18653/v1/D17-1163",
pages = "1547--1557",
abstract = "We propose a new, socially-impactful task for natural language processing: from a news corpus, extract names of persons who have been killed by police. We present a newly collected police fatality corpus, which we release publicly, and present a model to solve this problem that uses EM-based distant supervision with logistic regression and convolutional neural network classifiers. Our model outperforms two off-the-shelf event extractor systems, and it can suggest candidate victim names in some cases faster than one of the major manually-collected police fatality databases."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="keith-etal-2017-identifying">
<titleInfo>
<title>Identifying civilians killed by police with distantly supervised entity-event extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Katherine</namePart>
<namePart type="family">Keith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abram</namePart>
<namePart type="family">Handler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Pinkham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cara</namePart>
<namePart type="family">Magliozzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">McDuffie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brendan</namePart>
<namePart type="family">O’Connor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a new, socially-impactful task for natural language processing: from a news corpus, extract names of persons who have been killed by police. We present a newly collected police fatality corpus, which we release publicly, and present a model to solve this problem that uses EM-based distant supervision with logistic regression and convolutional neural network classifiers. Our model outperforms two off-the-shelf event extractor systems, and it can suggest candidate victim names in some cases faster than one of the major manually-collected police fatality databases.</abstract>
<identifier type="citekey">keith-etal-2017-identifying</identifier>
<identifier type="doi">10.18653/v1/D17-1163</identifier>
<location>
<url>https://aclanthology.org/D17-1163/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1547</start>
<end>1557</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying civilians killed by police with distantly supervised entity-event extraction
%A Keith, Katherine
%A Handler, Abram
%A Pinkham, Michael
%A Magliozzi, Cara
%A McDuffie, Joshua
%A O’Connor, Brendan
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F keith-etal-2017-identifying
%X We propose a new, socially-impactful task for natural language processing: from a news corpus, extract names of persons who have been killed by police. We present a newly collected police fatality corpus, which we release publicly, and present a model to solve this problem that uses EM-based distant supervision with logistic regression and convolutional neural network classifiers. Our model outperforms two off-the-shelf event extractor systems, and it can suggest candidate victim names in some cases faster than one of the major manually-collected police fatality databases.
%R 10.18653/v1/D17-1163
%U https://aclanthology.org/D17-1163/
%U https://doi.org/10.18653/v1/D17-1163
%P 1547-1557
Markdown (Informal)
[Identifying civilians killed by police with distantly supervised entity-event extraction](https://aclanthology.org/D17-1163/) (Keith et al., EMNLP 2017)
ACL