@inproceedings{keith-etal-2017-identifying,
    title = "Identifying civilians killed by police with distantly supervised entity-event extraction",
    author = "Keith, Katherine  and
      Handler, Abram  and
      Pinkham, Michael  and
      Magliozzi, Cara  and
      McDuffie, Joshua  and
      O{'}Connor, Brendan",
    editor = "Palmer, Martha  and
      Hwa, Rebecca  and
      Riedel, Sebastian",
    booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
    month = sep,
    year = "2017",
    address = "Copenhagen, Denmark",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D17-1163/",
    doi = "10.18653/v1/D17-1163",
    pages = "1547--1557",
    abstract = "We propose a new, socially-impactful task for natural language processing: from a news corpus, extract names of persons who have been killed by police. We present a newly collected police fatality corpus, which we release publicly, and present a model to solve this problem that uses EM-based distant supervision with logistic regression and convolutional neural network classifiers. Our model outperforms two off-the-shelf event extractor systems, and it can suggest candidate victim names in some cases faster than one of the major manually-collected police fatality databases."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="keith-etal-2017-identifying">
    <titleInfo>
        <title>Identifying civilians killed by police with distantly supervised entity-event extraction</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Katherine</namePart>
        <namePart type="family">Keith</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Abram</namePart>
        <namePart type="family">Handler</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Michael</namePart>
        <namePart type="family">Pinkham</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Cara</namePart>
        <namePart type="family">Magliozzi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Joshua</namePart>
        <namePart type="family">McDuffie</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Brendan</namePart>
        <namePart type="family">O’Connor</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Martha</namePart>
            <namePart type="family">Palmer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Rebecca</namePart>
            <namePart type="family">Hwa</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Sebastian</namePart>
            <namePart type="family">Riedel</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Copenhagen, Denmark</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We propose a new, socially-impactful task for natural language processing: from a news corpus, extract names of persons who have been killed by police. We present a newly collected police fatality corpus, which we release publicly, and present a model to solve this problem that uses EM-based distant supervision with logistic regression and convolutional neural network classifiers. Our model outperforms two off-the-shelf event extractor systems, and it can suggest candidate victim names in some cases faster than one of the major manually-collected police fatality databases.</abstract>
    <identifier type="citekey">keith-etal-2017-identifying</identifier>
    <identifier type="doi">10.18653/v1/D17-1163</identifier>
    <location>
        <url>https://aclanthology.org/D17-1163/</url>
    </location>
    <part>
        <date>2017-09</date>
        <extent unit="page">
            <start>1547</start>
            <end>1557</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying civilians killed by police with distantly supervised entity-event extraction
%A Keith, Katherine
%A Handler, Abram
%A Pinkham, Michael
%A Magliozzi, Cara
%A McDuffie, Joshua
%A O’Connor, Brendan
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F keith-etal-2017-identifying
%X We propose a new, socially-impactful task for natural language processing: from a news corpus, extract names of persons who have been killed by police. We present a newly collected police fatality corpus, which we release publicly, and present a model to solve this problem that uses EM-based distant supervision with logistic regression and convolutional neural network classifiers. Our model outperforms two off-the-shelf event extractor systems, and it can suggest candidate victim names in some cases faster than one of the major manually-collected police fatality databases.
%R 10.18653/v1/D17-1163
%U https://aclanthology.org/D17-1163/
%U https://doi.org/10.18653/v1/D17-1163
%P 1547-1557
Markdown (Informal)
[Identifying civilians killed by police with distantly supervised entity-event extraction](https://aclanthology.org/D17-1163/) (Keith et al., EMNLP 2017)
ACL