@inproceedings{chaturvedi-etal-2017-story,
title = "Story Comprehension for Predicting What Happens Next",
author = "Chaturvedi, Snigdha and
Peng, Haoruo and
Roth, Dan",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1168",
doi = "10.18653/v1/D17-1168",
pages = "1603--1614",
abstract = "Automatic story comprehension is a fundamental challenge in Natural Language Understanding, and can enable computers to learn about social norms, human behavior and commonsense. In this paper, we present a story comprehension model that explores three distinct semantic aspects: (i) the sequence of events described in the story, (ii) its emotional trajectory, and (iii) its plot consistency. We judge the model{'}s understanding of real-world stories by inquiring if, like humans, it can develop an expectation of what will happen next in a given story. Specifically, we use it to predict the correct ending of a given short story from possible alternatives. The model uses a hidden variable to weigh the semantic aspects in the context of the story. Our experiments demonstrate the potential of our approach to characterize these semantic aspects, and the strength of the hidden variable based approach. The model outperforms the state-of-the-art approaches and achieves best results on a publicly available dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chaturvedi-etal-2017-story">
<titleInfo>
<title>Story Comprehension for Predicting What Happens Next</title>
</titleInfo>
<name type="personal">
<namePart type="given">Snigdha</namePart>
<namePart type="family">Chaturvedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haoruo</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic story comprehension is a fundamental challenge in Natural Language Understanding, and can enable computers to learn about social norms, human behavior and commonsense. In this paper, we present a story comprehension model that explores three distinct semantic aspects: (i) the sequence of events described in the story, (ii) its emotional trajectory, and (iii) its plot consistency. We judge the model’s understanding of real-world stories by inquiring if, like humans, it can develop an expectation of what will happen next in a given story. Specifically, we use it to predict the correct ending of a given short story from possible alternatives. The model uses a hidden variable to weigh the semantic aspects in the context of the story. Our experiments demonstrate the potential of our approach to characterize these semantic aspects, and the strength of the hidden variable based approach. The model outperforms the state-of-the-art approaches and achieves best results on a publicly available dataset.</abstract>
<identifier type="citekey">chaturvedi-etal-2017-story</identifier>
<identifier type="doi">10.18653/v1/D17-1168</identifier>
<location>
<url>https://aclanthology.org/D17-1168</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1603</start>
<end>1614</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Story Comprehension for Predicting What Happens Next
%A Chaturvedi, Snigdha
%A Peng, Haoruo
%A Roth, Dan
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F chaturvedi-etal-2017-story
%X Automatic story comprehension is a fundamental challenge in Natural Language Understanding, and can enable computers to learn about social norms, human behavior and commonsense. In this paper, we present a story comprehension model that explores three distinct semantic aspects: (i) the sequence of events described in the story, (ii) its emotional trajectory, and (iii) its plot consistency. We judge the model’s understanding of real-world stories by inquiring if, like humans, it can develop an expectation of what will happen next in a given story. Specifically, we use it to predict the correct ending of a given short story from possible alternatives. The model uses a hidden variable to weigh the semantic aspects in the context of the story. Our experiments demonstrate the potential of our approach to characterize these semantic aspects, and the strength of the hidden variable based approach. The model outperforms the state-of-the-art approaches and achieves best results on a publicly available dataset.
%R 10.18653/v1/D17-1168
%U https://aclanthology.org/D17-1168
%U https://doi.org/10.18653/v1/D17-1168
%P 1603-1614
Markdown (Informal)
[Story Comprehension for Predicting What Happens Next](https://aclanthology.org/D17-1168) (Chaturvedi et al., EMNLP 2017)
ACL
- Snigdha Chaturvedi, Haoruo Peng, and Dan Roth. 2017. Story Comprehension for Predicting What Happens Next. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1603–1614, Copenhagen, Denmark. Association for Computational Linguistics.