@inproceedings{corro-etal-2017-efficient,
title = "Efficient Discontinuous Phrase-Structure Parsing via the Generalized Maximum Spanning Arborescence",
author = "Corro, Caio and
Le Roux, Joseph and
Lacroix, Mathieu",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1172",
doi = "10.18653/v1/D17-1172",
pages = "1644--1654",
abstract = "We present a new method for the joint task of tagging and non-projective dependency parsing. We demonstrate its usefulness with an application to discontinuous phrase-structure parsing where decoding lexicalized spines and syntactic derivations is performed jointly. The main contributions of this paper are (1) a reduction from joint tagging and non-projective dependency parsing to the Generalized Maximum Spanning Arborescence problem, and (2) a novel decoding algorithm for this problem through Lagrangian relaxation. We evaluate this model and obtain state-of-the-art results despite strong independence assumptions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="corro-etal-2017-efficient">
<titleInfo>
<title>Efficient Discontinuous Phrase-Structure Parsing via the Generalized Maximum Spanning Arborescence</title>
</titleInfo>
<name type="personal">
<namePart type="given">Caio</namePart>
<namePart type="family">Corro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Le Roux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathieu</namePart>
<namePart type="family">Lacroix</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a new method for the joint task of tagging and non-projective dependency parsing. We demonstrate its usefulness with an application to discontinuous phrase-structure parsing where decoding lexicalized spines and syntactic derivations is performed jointly. The main contributions of this paper are (1) a reduction from joint tagging and non-projective dependency parsing to the Generalized Maximum Spanning Arborescence problem, and (2) a novel decoding algorithm for this problem through Lagrangian relaxation. We evaluate this model and obtain state-of-the-art results despite strong independence assumptions.</abstract>
<identifier type="citekey">corro-etal-2017-efficient</identifier>
<identifier type="doi">10.18653/v1/D17-1172</identifier>
<location>
<url>https://aclanthology.org/D17-1172</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1644</start>
<end>1654</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Efficient Discontinuous Phrase-Structure Parsing via the Generalized Maximum Spanning Arborescence
%A Corro, Caio
%A Le Roux, Joseph
%A Lacroix, Mathieu
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F corro-etal-2017-efficient
%X We present a new method for the joint task of tagging and non-projective dependency parsing. We demonstrate its usefulness with an application to discontinuous phrase-structure parsing where decoding lexicalized spines and syntactic derivations is performed jointly. The main contributions of this paper are (1) a reduction from joint tagging and non-projective dependency parsing to the Generalized Maximum Spanning Arborescence problem, and (2) a novel decoding algorithm for this problem through Lagrangian relaxation. We evaluate this model and obtain state-of-the-art results despite strong independence assumptions.
%R 10.18653/v1/D17-1172
%U https://aclanthology.org/D17-1172
%U https://doi.org/10.18653/v1/D17-1172
%P 1644-1654
Markdown (Informal)
[Efficient Discontinuous Phrase-Structure Parsing via the Generalized Maximum Spanning Arborescence](https://aclanthology.org/D17-1172) (Corro et al., EMNLP 2017)
ACL