@inproceedings{zhang-etal-2017-semi,
title = "Semi-supervised Structured Prediction with Neural {CRF} Autoencoder",
author = "Zhang, Xiao and
Jiang, Yong and
Peng, Hao and
Tu, Kewei and
Goldwasser, Dan",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1179",
doi = "10.18653/v1/D17-1179",
pages = "1701--1711",
abstract = "In this paper we propose an end-to-end neural CRF autoencoder (NCRF-AE) model for semi-supervised learning of sequential structured prediction problems. Our NCRF-AE consists of two parts: an encoder which is a CRF model enhanced by deep neural networks, and a decoder which is a generative model trying to reconstruct the input. Our model has a unified structure with different loss functions for labeled and unlabeled data with shared parameters. We developed a variation of the EM algorithm for optimizing both the encoder and the decoder simultaneously by decoupling their parameters. Our Experimental results over the Part-of-Speech (POS) tagging task on eight different languages, show that our model can outperform competitive systems in both supervised and semi-supervised scenarios.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2017-semi">
<titleInfo>
<title>Semi-supervised Structured Prediction with Neural CRF Autoencoder</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiao</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yong</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kewei</namePart>
<namePart type="family">Tu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Goldwasser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we propose an end-to-end neural CRF autoencoder (NCRF-AE) model for semi-supervised learning of sequential structured prediction problems. Our NCRF-AE consists of two parts: an encoder which is a CRF model enhanced by deep neural networks, and a decoder which is a generative model trying to reconstruct the input. Our model has a unified structure with different loss functions for labeled and unlabeled data with shared parameters. We developed a variation of the EM algorithm for optimizing both the encoder and the decoder simultaneously by decoupling their parameters. Our Experimental results over the Part-of-Speech (POS) tagging task on eight different languages, show that our model can outperform competitive systems in both supervised and semi-supervised scenarios.</abstract>
<identifier type="citekey">zhang-etal-2017-semi</identifier>
<identifier type="doi">10.18653/v1/D17-1179</identifier>
<location>
<url>https://aclanthology.org/D17-1179</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1701</start>
<end>1711</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semi-supervised Structured Prediction with Neural CRF Autoencoder
%A Zhang, Xiao
%A Jiang, Yong
%A Peng, Hao
%A Tu, Kewei
%A Goldwasser, Dan
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F zhang-etal-2017-semi
%X In this paper we propose an end-to-end neural CRF autoencoder (NCRF-AE) model for semi-supervised learning of sequential structured prediction problems. Our NCRF-AE consists of two parts: an encoder which is a CRF model enhanced by deep neural networks, and a decoder which is a generative model trying to reconstruct the input. Our model has a unified structure with different loss functions for labeled and unlabeled data with shared parameters. We developed a variation of the EM algorithm for optimizing both the encoder and the decoder simultaneously by decoupling their parameters. Our Experimental results over the Part-of-Speech (POS) tagging task on eight different languages, show that our model can outperform competitive systems in both supervised and semi-supervised scenarios.
%R 10.18653/v1/D17-1179
%U https://aclanthology.org/D17-1179
%U https://doi.org/10.18653/v1/D17-1179
%P 1701-1711
Markdown (Informal)
[Semi-supervised Structured Prediction with Neural CRF Autoencoder](https://aclanthology.org/D17-1179) (Zhang et al., EMNLP 2017)
ACL