@inproceedings{yang-etal-2017-reference,
title = "Reference-Aware Language Models",
author = "Yang, Zichao and
Blunsom, Phil and
Dyer, Chris and
Ling, Wang",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1197/",
doi = "10.18653/v1/D17-1197",
pages = "1850--1859",
abstract = "We propose a general class of language models that treat reference as discrete stochastic latent variables. This decision allows for the creation of entity mentions by accessing external databases of referents (required by, e.g., dialogue generation) or past internal state (required to explicitly model coreferentiality). Beyond simple copying, our coreference model can additionally refer to a referent using varied mention forms (e.g., a reference to {\textquotedblleft}Jane{\textquotedblright} can be realized as {\textquotedblleft}she{\textquotedblright}), a characteristic feature of reference in natural languages. Experiments on three representative applications show our model variants outperform models based on deterministic attention and standard language modeling baselines."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2017-reference">
<titleInfo>
<title>Reference-Aware Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zichao</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Dyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wang</namePart>
<namePart type="family">Ling</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a general class of language models that treat reference as discrete stochastic latent variables. This decision allows for the creation of entity mentions by accessing external databases of referents (required by, e.g., dialogue generation) or past internal state (required to explicitly model coreferentiality). Beyond simple copying, our coreference model can additionally refer to a referent using varied mention forms (e.g., a reference to “Jane” can be realized as “she”), a characteristic feature of reference in natural languages. Experiments on three representative applications show our model variants outperform models based on deterministic attention and standard language modeling baselines.</abstract>
<identifier type="citekey">yang-etal-2017-reference</identifier>
<identifier type="doi">10.18653/v1/D17-1197</identifier>
<location>
<url>https://aclanthology.org/D17-1197/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1850</start>
<end>1859</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reference-Aware Language Models
%A Yang, Zichao
%A Blunsom, Phil
%A Dyer, Chris
%A Ling, Wang
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F yang-etal-2017-reference
%X We propose a general class of language models that treat reference as discrete stochastic latent variables. This decision allows for the creation of entity mentions by accessing external databases of referents (required by, e.g., dialogue generation) or past internal state (required to explicitly model coreferentiality). Beyond simple copying, our coreference model can additionally refer to a referent using varied mention forms (e.g., a reference to “Jane” can be realized as “she”), a characteristic feature of reference in natural languages. Experiments on three representative applications show our model variants outperform models based on deterministic attention and standard language modeling baselines.
%R 10.18653/v1/D17-1197
%U https://aclanthology.org/D17-1197/
%U https://doi.org/10.18653/v1/D17-1197
%P 1850-1859
Markdown (Informal)
[Reference-Aware Language Models](https://aclanthology.org/D17-1197/) (Yang et al., EMNLP 2017)
ACL
- Zichao Yang, Phil Blunsom, Chris Dyer, and Wang Ling. 2017. Reference-Aware Language Models. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1850–1859, Copenhagen, Denmark. Association for Computational Linguistics.