@inproceedings{assylbekov-etal-2017-syllable,
title = "Syllable-aware Neural Language Models: A Failure to Beat Character-aware Ones",
author = "Assylbekov, Zhenisbek and
Takhanov, Rustem and
Myrzakhmetov, Bagdat and
Washington, Jonathan N.",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1199",
doi = "10.18653/v1/D17-1199",
pages = "1866--1872",
abstract = "Syllabification does not seem to improve word-level RNN language modeling quality when compared to character-based segmentation. However, our best syllable-aware language model, achieving performance comparable to the competitive character-aware model, has 18{\%}-33{\%} fewer parameters and is trained 1.2-2.2 times faster.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="assylbekov-etal-2017-syllable">
<titleInfo>
<title>Syllable-aware Neural Language Models: A Failure to Beat Character-aware Ones</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhenisbek</namePart>
<namePart type="family">Assylbekov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rustem</namePart>
<namePart type="family">Takhanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bagdat</namePart>
<namePart type="family">Myrzakhmetov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="given">N</namePart>
<namePart type="family">Washington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Syllabification does not seem to improve word-level RNN language modeling quality when compared to character-based segmentation. However, our best syllable-aware language model, achieving performance comparable to the competitive character-aware model, has 18%-33% fewer parameters and is trained 1.2-2.2 times faster.</abstract>
<identifier type="citekey">assylbekov-etal-2017-syllable</identifier>
<identifier type="doi">10.18653/v1/D17-1199</identifier>
<location>
<url>https://aclanthology.org/D17-1199</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1866</start>
<end>1872</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Syllable-aware Neural Language Models: A Failure to Beat Character-aware Ones
%A Assylbekov, Zhenisbek
%A Takhanov, Rustem
%A Myrzakhmetov, Bagdat
%A Washington, Jonathan N.
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F assylbekov-etal-2017-syllable
%X Syllabification does not seem to improve word-level RNN language modeling quality when compared to character-based segmentation. However, our best syllable-aware language model, achieving performance comparable to the competitive character-aware model, has 18%-33% fewer parameters and is trained 1.2-2.2 times faster.
%R 10.18653/v1/D17-1199
%U https://aclanthology.org/D17-1199
%U https://doi.org/10.18653/v1/D17-1199
%P 1866-1872
Markdown (Informal)
[Syllable-aware Neural Language Models: A Failure to Beat Character-aware Ones](https://aclanthology.org/D17-1199) (Assylbekov et al., EMNLP 2017)
ACL