@inproceedings{hashimoto-etal-2017-joint,
title = "A Joint Many-Task Model: Growing a Neural Network for Multiple {NLP} Tasks",
author = "Hashimoto, Kazuma and
Xiong, Caiming and
Tsuruoka, Yoshimasa and
Socher, Richard",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1206",
doi = "10.18653/v1/D17-1206",
pages = "1923--1933",
abstract = "Transfer and multi-task learning have traditionally focused on either a single source-target pair or very few, similar tasks. Ideally, the linguistic levels of morphology, syntax and semantics would benefit each other by being trained in a single model. We introduce a joint many-task model together with a strategy for successively growing its depth to solve increasingly complex tasks. Higher layers include shortcut connections to lower-level task predictions to reflect linguistic hierarchies. We use a simple regularization term to allow for optimizing all model weights to improve one task{'}s loss without exhibiting catastrophic interference of the other tasks. Our single end-to-end model obtains state-of-the-art or competitive results on five different tasks from tagging, parsing, relatedness, and entailment tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hashimoto-etal-2017-joint">
<titleInfo>
<title>A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kazuma</namePart>
<namePart type="family">Hashimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caiming</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoshimasa</namePart>
<namePart type="family">Tsuruoka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Socher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Transfer and multi-task learning have traditionally focused on either a single source-target pair or very few, similar tasks. Ideally, the linguistic levels of morphology, syntax and semantics would benefit each other by being trained in a single model. We introduce a joint many-task model together with a strategy for successively growing its depth to solve increasingly complex tasks. Higher layers include shortcut connections to lower-level task predictions to reflect linguistic hierarchies. We use a simple regularization term to allow for optimizing all model weights to improve one task’s loss without exhibiting catastrophic interference of the other tasks. Our single end-to-end model obtains state-of-the-art or competitive results on five different tasks from tagging, parsing, relatedness, and entailment tasks.</abstract>
<identifier type="citekey">hashimoto-etal-2017-joint</identifier>
<identifier type="doi">10.18653/v1/D17-1206</identifier>
<location>
<url>https://aclanthology.org/D17-1206</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>1923</start>
<end>1933</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks
%A Hashimoto, Kazuma
%A Xiong, Caiming
%A Tsuruoka, Yoshimasa
%A Socher, Richard
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F hashimoto-etal-2017-joint
%X Transfer and multi-task learning have traditionally focused on either a single source-target pair or very few, similar tasks. Ideally, the linguistic levels of morphology, syntax and semantics would benefit each other by being trained in a single model. We introduce a joint many-task model together with a strategy for successively growing its depth to solve increasingly complex tasks. Higher layers include shortcut connections to lower-level task predictions to reflect linguistic hierarchies. We use a simple regularization term to allow for optimizing all model weights to improve one task’s loss without exhibiting catastrophic interference of the other tasks. Our single end-to-end model obtains state-of-the-art or competitive results on five different tasks from tagging, parsing, relatedness, and entailment tasks.
%R 10.18653/v1/D17-1206
%U https://aclanthology.org/D17-1206
%U https://doi.org/10.18653/v1/D17-1206
%P 1923-1933
Markdown (Informal)
[A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks](https://aclanthology.org/D17-1206) (Hashimoto et al., EMNLP 2017)
ACL