@inproceedings{zhang-wan-2017-towards,
title = "Towards Automatic Construction of News Overview Articles by News Synthesis",
author = "Zhang, Jianmin and
Wan, Xiaojun",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1224",
doi = "10.18653/v1/D17-1224",
pages = "2111--2116",
abstract = "In this paper we investigate a new task of automatically constructing an overview article from a given set of news articles about a news event. We propose a news synthesis approach to address this task based on passage segmentation, ranking, selection and merging. Our proposed approach is compared with several typical multi-document summarization methods on the Wikinews dataset, and achieves the best performance on both automatic evaluation and manual evaluation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-wan-2017-towards">
<titleInfo>
<title>Towards Automatic Construction of News Overview Articles by News Synthesis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jianmin</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we investigate a new task of automatically constructing an overview article from a given set of news articles about a news event. We propose a news synthesis approach to address this task based on passage segmentation, ranking, selection and merging. Our proposed approach is compared with several typical multi-document summarization methods on the Wikinews dataset, and achieves the best performance on both automatic evaluation and manual evaluation.</abstract>
<identifier type="citekey">zhang-wan-2017-towards</identifier>
<identifier type="doi">10.18653/v1/D17-1224</identifier>
<location>
<url>https://aclanthology.org/D17-1224</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2111</start>
<end>2116</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Automatic Construction of News Overview Articles by News Synthesis
%A Zhang, Jianmin
%A Wan, Xiaojun
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F zhang-wan-2017-towards
%X In this paper we investigate a new task of automatically constructing an overview article from a given set of news articles about a news event. We propose a news synthesis approach to address this task based on passage segmentation, ranking, selection and merging. Our proposed approach is compared with several typical multi-document summarization methods on the Wikinews dataset, and achieves the best performance on both automatic evaluation and manual evaluation.
%R 10.18653/v1/D17-1224
%U https://aclanthology.org/D17-1224
%U https://doi.org/10.18653/v1/D17-1224
%P 2111-2116
Markdown (Informal)
[Towards Automatic Construction of News Overview Articles by News Synthesis](https://aclanthology.org/D17-1224) (Zhang & Wan, EMNLP 2017)
ACL