@inproceedings{bawden-2017-machine,
title = "Machine Translation, it{'}s a question of style, innit? The case of {E}nglish tag questions",
author = "Bawden, Rachel",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1265",
doi = "10.18653/v1/D17-1265",
pages = "2507--2512",
abstract = "In this paper, we address the problem of generating English tag questions (TQs) (e.g. it is, isn{'}t it?) in Machine Translation (MT). We propose a post-edition solution, formulating the problem as a multi-class classification task. We present (i) the automatic annotation of English TQs in a parallel corpus of subtitles and (ii) an approach using a series of classifiers to predict TQ forms, which we use to post-edit state-of-the-art MT outputs. Our method provides significant improvements in English TQ translation when translating from Czech, French and German, in turn improving the fluidity, naturalness, grammatical correctness and pragmatic coherence of MT output.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bawden-2017-machine">
<titleInfo>
<title>Machine Translation, it’s a question of style, innit? The case of English tag questions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rachel</namePart>
<namePart type="family">Bawden</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we address the problem of generating English tag questions (TQs) (e.g. it is, isn’t it?) in Machine Translation (MT). We propose a post-edition solution, formulating the problem as a multi-class classification task. We present (i) the automatic annotation of English TQs in a parallel corpus of subtitles and (ii) an approach using a series of classifiers to predict TQ forms, which we use to post-edit state-of-the-art MT outputs. Our method provides significant improvements in English TQ translation when translating from Czech, French and German, in turn improving the fluidity, naturalness, grammatical correctness and pragmatic coherence of MT output.</abstract>
<identifier type="citekey">bawden-2017-machine</identifier>
<identifier type="doi">10.18653/v1/D17-1265</identifier>
<location>
<url>https://aclanthology.org/D17-1265</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2507</start>
<end>2512</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Machine Translation, it’s a question of style, innit? The case of English tag questions
%A Bawden, Rachel
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F bawden-2017-machine
%X In this paper, we address the problem of generating English tag questions (TQs) (e.g. it is, isn’t it?) in Machine Translation (MT). We propose a post-edition solution, formulating the problem as a multi-class classification task. We present (i) the automatic annotation of English TQs in a parallel corpus of subtitles and (ii) an approach using a series of classifiers to predict TQ forms, which we use to post-edit state-of-the-art MT outputs. Our method provides significant improvements in English TQ translation when translating from Czech, French and German, in turn improving the fluidity, naturalness, grammatical correctness and pragmatic coherence of MT output.
%R 10.18653/v1/D17-1265
%U https://aclanthology.org/D17-1265
%U https://doi.org/10.18653/v1/D17-1265
%P 2507-2512
Markdown (Informal)
[Machine Translation, it’s a question of style, innit? The case of English tag questions](https://aclanthology.org/D17-1265) (Bawden, EMNLP 2017)
ACL