@inproceedings{mayhew-etal-2017-cheap,
title = "Cheap Translation for Cross-Lingual Named Entity Recognition",
author = "Mayhew, Stephen and
Tsai, Chen-Tse and
Roth, Dan",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1269",
doi = "10.18653/v1/D17-1269",
pages = "2536--2545",
abstract = "Recent work in NLP has attempted to deal with low-resource languages but still assumed a resource level that is not present for most languages, e.g., the availability of Wikipedia in the target language. We propose a simple method for cross-lingual named entity recognition (NER) that works well in settings with \textit{very} minimal resources. Our approach makes use of a lexicon to {``}translate{''} annotated data available in one or several high resource language(s) into the target language, and learns a standard monolingual NER model there. Further, when Wikipedia is available in the target language, our method can enhance Wikipedia based methods to yield state-of-the-art NER results; we evaluate on 7 diverse languages, improving the state-of-the-art by an average of 5.5{\%} F1 points. With the minimal resources required, this is an extremely portable cross-lingual NER approach, as illustrated using a truly low-resource language, Uyghur.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mayhew-etal-2017-cheap">
<titleInfo>
<title>Cheap Translation for Cross-Lingual Named Entity Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stephen</namePart>
<namePart type="family">Mayhew</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen-Tse</namePart>
<namePart type="family">Tsai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent work in NLP has attempted to deal with low-resource languages but still assumed a resource level that is not present for most languages, e.g., the availability of Wikipedia in the target language. We propose a simple method for cross-lingual named entity recognition (NER) that works well in settings with very minimal resources. Our approach makes use of a lexicon to “translate” annotated data available in one or several high resource language(s) into the target language, and learns a standard monolingual NER model there. Further, when Wikipedia is available in the target language, our method can enhance Wikipedia based methods to yield state-of-the-art NER results; we evaluate on 7 diverse languages, improving the state-of-the-art by an average of 5.5% F1 points. With the minimal resources required, this is an extremely portable cross-lingual NER approach, as illustrated using a truly low-resource language, Uyghur.</abstract>
<identifier type="citekey">mayhew-etal-2017-cheap</identifier>
<identifier type="doi">10.18653/v1/D17-1269</identifier>
<location>
<url>https://aclanthology.org/D17-1269</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2536</start>
<end>2545</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cheap Translation for Cross-Lingual Named Entity Recognition
%A Mayhew, Stephen
%A Tsai, Chen-Tse
%A Roth, Dan
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F mayhew-etal-2017-cheap
%X Recent work in NLP has attempted to deal with low-resource languages but still assumed a resource level that is not present for most languages, e.g., the availability of Wikipedia in the target language. We propose a simple method for cross-lingual named entity recognition (NER) that works well in settings with very minimal resources. Our approach makes use of a lexicon to “translate” annotated data available in one or several high resource language(s) into the target language, and learns a standard monolingual NER model there. Further, when Wikipedia is available in the target language, our method can enhance Wikipedia based methods to yield state-of-the-art NER results; we evaluate on 7 diverse languages, improving the state-of-the-art by an average of 5.5% F1 points. With the minimal resources required, this is an extremely portable cross-lingual NER approach, as illustrated using a truly low-resource language, Uyghur.
%R 10.18653/v1/D17-1269
%U https://aclanthology.org/D17-1269
%U https://doi.org/10.18653/v1/D17-1269
%P 2536-2545
Markdown (Informal)
[Cheap Translation for Cross-Lingual Named Entity Recognition](https://aclanthology.org/D17-1269) (Mayhew et al., EMNLP 2017)
ACL