@inproceedings{kim-etal-2017-cross,
title = "Cross-Lingual Transfer Learning for {POS} Tagging without Cross-Lingual Resources",
author = "Kim, Joo-Kyung and
Kim, Young-Bum and
Sarikaya, Ruhi and
Fosler-Lussier, Eric",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1302",
doi = "10.18653/v1/D17-1302",
pages = "2832--2838",
abstract = "Training a POS tagging model with crosslingual transfer learning usually requires linguistic knowledge and resources about the relation between the source language and the target language. In this paper, we introduce a cross-lingual transfer learning model for POS tagging without ancillary resources such as parallel corpora. The proposed cross-lingual model utilizes a common BLSTM that enables knowledge transfer from other languages, and private BLSTMs for language-specific representations. The cross-lingual model is trained with language-adversarial training and bidirectional language modeling as auxiliary objectives to better represent language-general information while not losing the information about a specific target language. Evaluating on POS datasets from 14 languages in the Universal Dependencies corpus, we show that the proposed transfer learning model improves the POS tagging performance of the target languages without exploiting any linguistic knowledge between the source language and the target language.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2017-cross">
<titleInfo>
<title>Cross-Lingual Transfer Learning for POS Tagging without Cross-Lingual Resources</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joo-Kyung</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Young-Bum</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruhi</namePart>
<namePart type="family">Sarikaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Fosler-Lussier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Training a POS tagging model with crosslingual transfer learning usually requires linguistic knowledge and resources about the relation between the source language and the target language. In this paper, we introduce a cross-lingual transfer learning model for POS tagging without ancillary resources such as parallel corpora. The proposed cross-lingual model utilizes a common BLSTM that enables knowledge transfer from other languages, and private BLSTMs for language-specific representations. The cross-lingual model is trained with language-adversarial training and bidirectional language modeling as auxiliary objectives to better represent language-general information while not losing the information about a specific target language. Evaluating on POS datasets from 14 languages in the Universal Dependencies corpus, we show that the proposed transfer learning model improves the POS tagging performance of the target languages without exploiting any linguistic knowledge between the source language and the target language.</abstract>
<identifier type="citekey">kim-etal-2017-cross</identifier>
<identifier type="doi">10.18653/v1/D17-1302</identifier>
<location>
<url>https://aclanthology.org/D17-1302</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2832</start>
<end>2838</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Lingual Transfer Learning for POS Tagging without Cross-Lingual Resources
%A Kim, Joo-Kyung
%A Kim, Young-Bum
%A Sarikaya, Ruhi
%A Fosler-Lussier, Eric
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F kim-etal-2017-cross
%X Training a POS tagging model with crosslingual transfer learning usually requires linguistic knowledge and resources about the relation between the source language and the target language. In this paper, we introduce a cross-lingual transfer learning model for POS tagging without ancillary resources such as parallel corpora. The proposed cross-lingual model utilizes a common BLSTM that enables knowledge transfer from other languages, and private BLSTMs for language-specific representations. The cross-lingual model is trained with language-adversarial training and bidirectional language modeling as auxiliary objectives to better represent language-general information while not losing the information about a specific target language. Evaluating on POS datasets from 14 languages in the Universal Dependencies corpus, we show that the proposed transfer learning model improves the POS tagging performance of the target languages without exploiting any linguistic knowledge between the source language and the target language.
%R 10.18653/v1/D17-1302
%U https://aclanthology.org/D17-1302
%U https://doi.org/10.18653/v1/D17-1302
%P 2832-2838
Markdown (Informal)
[Cross-Lingual Transfer Learning for POS Tagging without Cross-Lingual Resources](https://aclanthology.org/D17-1302) (Kim et al., EMNLP 2017)
ACL